Metamath Proof Explorer


Theorem cantnfp1

Description: If F is created by adding a single term ( FX ) = Y to G , where X is larger than any element of the support of G , then F is also a finitely supported function and it is assigned the value ( ( A ^o X ) .o Y ) +o z where z is the value of G . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 1-Jul-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfp1.g φGS
cantnfp1.x φXB
cantnfp1.y φYA
cantnfp1.s φGsuppX
cantnfp1.f F=tBift=XYGt
Assertion cantnfp1 φFSACNFBF=A𝑜X𝑜Y+𝑜ACNFBG

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfp1.g φGS
5 cantnfp1.x φXB
6 cantnfp1.y φYA
7 cantnfp1.s φGsuppX
8 cantnfp1.f F=tBift=XYGt
9 onelon BOnXBXOn
10 3 5 9 syl2anc φXOn
11 eloni XOnOrdX
12 ordirr OrdX¬XX
13 10 11 12 3syl φ¬XX
14 fvex GXV
15 dif1o GXV1𝑜GXVGX
16 14 15 mpbiran GXV1𝑜GX
17 1 2 3 cantnfs φGSG:BAfinSuppG
18 4 17 mpbid φG:BAfinSuppG
19 18 simpld φG:BA
20 19 ffnd φGFnB
21 0ex V
22 21 a1i φV
23 elsuppfn GFnBBOnVXsuppGXBGX
24 20 3 22 23 syl3anc φXsuppGXBGX
25 16 bicomi GXGXV1𝑜
26 25 a1i φGXGXV1𝑜
27 26 anbi2d φXBGXXBGXV1𝑜
28 24 27 bitrd φXsuppGXBGXV1𝑜
29 7 sseld φXsuppGXX
30 28 29 sylbird φXBGXV1𝑜XX
31 5 30 mpand φGXV1𝑜XX
32 16 31 biimtrrid φGXXX
33 32 necon1bd φ¬XXGX=
34 13 33 mpd φGX=
35 34 ad3antrrr φY=tBt=XGX=
36 simpr φY=tBt=Xt=X
37 36 fveq2d φY=tBt=XGt=GX
38 simpllr φY=tBt=XY=
39 35 37 38 3eqtr4rd φY=tBt=XY=Gt
40 eqidd φY=tB¬t=XGt=Gt
41 39 40 ifeqda φY=tBift=XYGt=Gt
42 41 mpteq2dva φY=tBift=XYGt=tBGt
43 8 42 eqtrid φY=F=tBGt
44 19 feqmptd φG=tBGt
45 44 adantr φY=G=tBGt
46 43 45 eqtr4d φY=F=G
47 4 adantr φY=GS
48 46 47 eqeltrd φY=FS
49 oecl AOnBOnA𝑜BOn
50 2 3 49 syl2anc φA𝑜BOn
51 1 2 3 cantnff φACNFB:SA𝑜B
52 51 4 ffvelcdmd φACNFBGA𝑜B
53 onelon A𝑜BOnACNFBGA𝑜BACNFBGOn
54 50 52 53 syl2anc φACNFBGOn
55 54 adantr φY=ACNFBGOn
56 oa0r ACNFBGOn+𝑜ACNFBG=ACNFBG
57 55 56 syl φY=+𝑜ACNFBG=ACNFBG
58 oveq2 Y=A𝑜X𝑜Y=A𝑜X𝑜
59 oecl AOnXOnA𝑜XOn
60 2 10 59 syl2anc φA𝑜XOn
61 om0 A𝑜XOnA𝑜X𝑜=
62 60 61 syl φA𝑜X𝑜=
63 58 62 sylan9eqr φY=A𝑜X𝑜Y=
64 63 oveq1d φY=A𝑜X𝑜Y+𝑜ACNFBG=+𝑜ACNFBG
65 46 fveq2d φY=ACNFBF=ACNFBG
66 57 64 65 3eqtr4rd φY=ACNFBF=A𝑜X𝑜Y+𝑜ACNFBG
67 48 66 jca φY=FSACNFBF=A𝑜X𝑜Y+𝑜ACNFBG
68 2 adantr φYAOn
69 3 adantr φYBOn
70 4 adantr φYGS
71 5 adantr φYXB
72 6 adantr φYYA
73 7 adantr φYGsuppX
74 1 68 69 70 71 72 73 8 cantnfp1lem1 φYFS
75 onelon AOnYAYOn
76 2 6 75 syl2anc φYOn
77 on0eln0 YOnYY
78 76 77 syl φYY
79 78 biimpar φYY
80 eqid OrdIsoEFsupp=OrdIsoEFsupp
81 eqid seqωkV,zVA𝑜OrdIsoEFsuppk𝑜FOrdIsoEFsuppk+𝑜z=seqωkV,zVA𝑜OrdIsoEFsuppk𝑜FOrdIsoEFsuppk+𝑜z
82 eqid OrdIsoEGsupp=OrdIsoEGsupp
83 eqid seqωkV,zVA𝑜OrdIsoEGsuppk𝑜GOrdIsoEGsuppk+𝑜z=seqωkV,zVA𝑜OrdIsoEGsuppk𝑜GOrdIsoEGsuppk+𝑜z
84 1 68 69 70 71 72 73 8 79 80 81 82 83 cantnfp1lem3 φYACNFBF=A𝑜X𝑜Y+𝑜ACNFBG
85 74 84 jca φYFSACNFBF=A𝑜X𝑜Y+𝑜ACNFBG
86 67 85 pm2.61dane φFSACNFBF=A𝑜X𝑜Y+𝑜ACNFBG