Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 20-Jun-2015) (Revised by AV, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
cantnfp1.g | |
||
cantnfp1.x | |
||
cantnfp1.y | |
||
cantnfp1.s | |
||
cantnfp1.f | |
||
Assertion | cantnfp1lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | cantnfp1.g | |
|
5 | cantnfp1.x | |
|
6 | cantnfp1.y | |
|
7 | cantnfp1.s | |
|
8 | cantnfp1.f | |
|
9 | 6 | adantr | |
10 | 1 2 3 | cantnfs | |
11 | 4 10 | mpbid | |
12 | 11 | simpld | |
13 | 12 | ffvelcdmda | |
14 | 9 13 | ifcld | |
15 | 14 8 | fmptd | |
16 | 11 | simprd | |
17 | 16 | fsuppimpd | |
18 | snfi | |
|
19 | unfi | |
|
20 | 17 18 19 | sylancl | |
21 | eqeq1 | |
|
22 | fveq2 | |
|
23 | 21 22 | ifbieq2d | |
24 | eldifi | |
|
25 | 24 | adantl | |
26 | 6 | adantr | |
27 | fvex | |
|
28 | ifexg | |
|
29 | 26 27 28 | sylancl | |
30 | 8 23 25 29 | fvmptd3 | |
31 | eldifn | |
|
32 | 31 | adantl | |
33 | velsn | |
|
34 | elun2 | |
|
35 | 33 34 | sylbir | |
36 | 32 35 | nsyl | |
37 | 36 | iffalsed | |
38 | ssun1 | |
|
39 | sscon | |
|
40 | 38 39 | ax-mp | |
41 | 40 | sseli | |
42 | ssidd | |
|
43 | 0ex | |
|
44 | 43 | a1i | |
45 | 12 42 3 44 | suppssr | |
46 | 41 45 | sylan2 | |
47 | 30 37 46 | 3eqtrd | |
48 | 15 47 | suppss | |
49 | 20 48 | ssfid | |
50 | 8 | funmpt2 | |
51 | mptexg | |
|
52 | 8 51 | eqeltrid | |
53 | 3 52 | syl | |
54 | funisfsupp | |
|
55 | 50 53 44 54 | mp3an2i | |
56 | 49 55 | mpbird | |
57 | 1 2 3 | cantnfs | |
58 | 15 56 57 | mpbir2and | |