Metamath Proof Explorer


Theorem cantnfp1lem1

Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 20-Jun-2015) (Revised by AV, 30-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfp1.g φGS
cantnfp1.x φXB
cantnfp1.y φYA
cantnfp1.s φGsuppX
cantnfp1.f F=tBift=XYGt
Assertion cantnfp1lem1 φFS

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfp1.g φGS
5 cantnfp1.x φXB
6 cantnfp1.y φYA
7 cantnfp1.s φGsuppX
8 cantnfp1.f F=tBift=XYGt
9 6 adantr φtBYA
10 1 2 3 cantnfs φGSG:BAfinSuppG
11 4 10 mpbid φG:BAfinSuppG
12 11 simpld φG:BA
13 12 ffvelcdmda φtBGtA
14 9 13 ifcld φtBift=XYGtA
15 14 8 fmptd φF:BA
16 11 simprd φfinSuppG
17 16 fsuppimpd φGsuppFin
18 snfi XFin
19 unfi GsuppFinXFinsuppGXFin
20 17 18 19 sylancl φsuppGXFin
21 eqeq1 t=kt=Xk=X
22 fveq2 t=kGt=Gk
23 21 22 ifbieq2d t=kift=XYGt=ifk=XYGk
24 eldifi kBsuppGXkB
25 24 adantl φkBsuppGXkB
26 6 adantr φkBsuppGXYA
27 fvex GkV
28 ifexg YAGkVifk=XYGkV
29 26 27 28 sylancl φkBsuppGXifk=XYGkV
30 8 23 25 29 fvmptd3 φkBsuppGXFk=ifk=XYGk
31 eldifn kBsuppGX¬ksuppGX
32 31 adantl φkBsuppGX¬ksuppGX
33 velsn kXk=X
34 elun2 kXksuppGX
35 33 34 sylbir k=XksuppGX
36 32 35 nsyl φkBsuppGX¬k=X
37 36 iffalsed φkBsuppGXifk=XYGk=Gk
38 ssun1 GsuppsuppGX
39 sscon GsuppsuppGXBsuppGXBsuppG
40 38 39 ax-mp BsuppGXBsuppG
41 40 sseli kBsuppGXkBsuppG
42 ssidd φGsuppGsupp
43 0ex V
44 43 a1i φV
45 12 42 3 44 suppssr φkBsuppGGk=
46 41 45 sylan2 φkBsuppGXGk=
47 30 37 46 3eqtrd φkBsuppGXFk=
48 15 47 suppss φFsuppsuppGX
49 20 48 ssfid φFsuppFin
50 8 funmpt2 FunF
51 mptexg BOntBift=XYGtV
52 8 51 eqeltrid BOnFV
53 3 52 syl φFV
54 funisfsupp FunFFVVfinSuppFFsuppFin
55 50 53 44 54 mp3an2i φfinSuppFFsuppFin
56 49 55 mpbird φfinSuppF
57 1 2 3 cantnfs φFSF:BAfinSuppF
58 15 56 57 mpbir2and φFS