Metamath Proof Explorer


Theorem oemapso

Description: The relation T is a strict order on S (a corollary of wemapso2 ). (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
Assertion oemapso φ T Or S

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 eloni B On Ord B
6 ordwe Ord B E We B
7 weso E We B E Or B
8 3 5 6 7 4syl φ E Or B
9 cnvso E Or B E -1 Or B
10 8 9 sylib φ E -1 Or B
11 eloni A On Ord A
12 ordwe Ord A E We A
13 weso E We A E Or A
14 2 11 12 13 4syl φ E Or A
15 fvex y z V
16 15 epeli x z E y z x z y z
17 vex w V
18 vex z V
19 17 18 brcnv w E -1 z z E w
20 epel z E w z w
21 19 20 bitri w E -1 z z w
22 21 imbi1i w E -1 z x w = y w z w x w = y w
23 22 ralbii w B w E -1 z x w = y w w B z w x w = y w
24 16 23 anbi12i x z E y z w B w E -1 z x w = y w x z y z w B z w x w = y w
25 24 rexbii z B x z E y z w B w E -1 z x w = y w z B x z y z w B z w x w = y w
26 25 opabbii x y | z B x z E y z w B w E -1 z x w = y w = x y | z B x z y z w B z w x w = y w
27 4 26 eqtr4i T = x y | z B x z E y z w B w E -1 z x w = y w
28 breq1 g = x finSupp g finSupp x
29 28 cbvrabv g A B | finSupp g = x A B | finSupp x
30 27 29 wemapso2 B On E -1 Or B E Or A T Or g A B | finSupp g
31 3 10 14 30 syl3anc φ T Or g A B | finSupp g
32 eqid g A B | finSupp g = g A B | finSupp g
33 32 2 3 cantnfdm φ dom A CNF B = g A B | finSupp g
34 1 33 syl5eq φ S = g A B | finSupp g
35 soeq2 S = g A B | finSupp g T Or S T Or g A B | finSupp g
36 34 35 syl φ T Or S T Or g A B | finSupp g
37 31 36 mpbird φ T Or S