| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
oemapval.t |
|
| 5 |
1 2 3 4
|
oemapso |
|
| 6 |
|
oecl |
|
| 7 |
2 3 6
|
syl2anc |
|
| 8 |
|
eloni |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
ordwe |
|
| 11 |
|
weso |
|
| 12 |
|
sopo |
|
| 13 |
9 10 11 12
|
4syl |
|
| 14 |
1 2 3
|
cantnff |
|
| 15 |
14
|
frnd |
|
| 16 |
|
onss |
|
| 17 |
7 16
|
syl |
|
| 18 |
17
|
sseld |
|
| 19 |
|
eleq1w |
|
| 20 |
|
eleq1w |
|
| 21 |
19 20
|
imbi12d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
r19.21v |
|
| 24 |
|
ordelss |
|
| 25 |
9 24
|
sylan |
|
| 26 |
25
|
sselda |
|
| 27 |
|
pm5.5 |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
ralbidva |
|
| 30 |
|
dfss3 |
|
| 31 |
29 30
|
bitr4di |
|
| 32 |
|
eleq1 |
|
| 33 |
2
|
adantr |
|
| 34 |
33
|
adantr |
|
| 35 |
3
|
adantr |
|
| 36 |
35
|
adantr |
|
| 37 |
|
simplrl |
|
| 38 |
|
simplrr |
|
| 39 |
7
|
adantr |
|
| 40 |
|
simprl |
|
| 41 |
|
onelon |
|
| 42 |
39 40 41
|
syl2anc |
|
| 43 |
|
on0eln0 |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
biimpar |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
1 34 36 4 37 38 45 46 47 48 49
|
cantnflem4 |
|
| 51 |
|
fczsupp0 |
|
| 52 |
51
|
eqcomi |
|
| 53 |
|
oieq2 |
|
| 54 |
52 53
|
ax-mp |
|
| 55 |
|
ne0i |
|
| 56 |
55
|
ad2antrl |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
neeq1d |
|
| 59 |
56 58
|
syl5ibcom |
|
| 60 |
59
|
necon2d |
|
| 61 |
|
on0eln0 |
|
| 62 |
|
oe0m1 |
|
| 63 |
61 62
|
bitr3d |
|
| 64 |
35 63
|
syl |
|
| 65 |
|
on0eln0 |
|
| 66 |
33 65
|
syl |
|
| 67 |
60 64 66
|
3imtr4d |
|
| 68 |
|
ne0i |
|
| 69 |
67 68
|
impel |
|
| 70 |
|
fconstmpt |
|
| 71 |
69 70
|
fmptd |
|
| 72 |
|
0ex |
|
| 73 |
72
|
a1i |
|
| 74 |
3 73
|
fczfsuppd |
|
| 75 |
74
|
adantr |
|
| 76 |
1 2 3
|
cantnfs |
|
| 77 |
76
|
adantr |
|
| 78 |
71 75 77
|
mpbir2and |
|
| 79 |
|
eqid |
|
| 80 |
1 33 35 54 78 79
|
cantnfval |
|
| 81 |
|
we0 |
|
| 82 |
|
eqid |
|
| 83 |
82
|
oien |
|
| 84 |
72 81 83
|
mp2an |
|
| 85 |
|
en0 |
|
| 86 |
84 85
|
mpbi |
|
| 87 |
86
|
fveq2i |
|
| 88 |
79
|
seqom0g |
|
| 89 |
72 88
|
ax-mp |
|
| 90 |
87 89
|
eqtri |
|
| 91 |
80 90
|
eqtrdi |
|
| 92 |
14
|
adantr |
|
| 93 |
92
|
ffnd |
|
| 94 |
|
fnfvelrn |
|
| 95 |
93 78 94
|
syl2anc |
|
| 96 |
91 95
|
eqeltrrd |
|
| 97 |
32 50 96
|
pm2.61ne |
|
| 98 |
97
|
expr |
|
| 99 |
31 98
|
sylbid |
|
| 100 |
99
|
ex |
|
| 101 |
100
|
com23 |
|
| 102 |
101
|
a2i |
|
| 103 |
102
|
a1i |
|
| 104 |
23 103
|
biimtrid |
|
| 105 |
22 104
|
tfis2 |
|
| 106 |
105
|
com3l |
|
| 107 |
18 106
|
mpdd |
|
| 108 |
107
|
ssrdv |
|
| 109 |
15 108
|
eqssd |
|
| 110 |
|
dffo2 |
|
| 111 |
14 109 110
|
sylanbrc |
|
| 112 |
2
|
adantr |
|
| 113 |
3
|
adantr |
|
| 114 |
|
fveq2 |
|
| 115 |
|
fveq2 |
|
| 116 |
114 115
|
eleq12d |
|
| 117 |
|
eleq1w |
|
| 118 |
117
|
imbi1d |
|
| 119 |
118
|
ralbidv |
|
| 120 |
116 119
|
anbi12d |
|
| 121 |
120
|
cbvrexvw |
|
| 122 |
|
fveq1 |
|
| 123 |
|
fveq1 |
|
| 124 |
|
eleq12 |
|
| 125 |
122 123 124
|
syl2an |
|
| 126 |
|
fveq1 |
|
| 127 |
|
fveq1 |
|
| 128 |
126 127
|
eqeqan12d |
|
| 129 |
128
|
imbi2d |
|
| 130 |
129
|
ralbidv |
|
| 131 |
125 130
|
anbi12d |
|
| 132 |
131
|
rexbidv |
|
| 133 |
121 132
|
bitrid |
|
| 134 |
133
|
cbvopabv |
|
| 135 |
4 134
|
eqtri |
|
| 136 |
|
simprll |
|
| 137 |
|
simprlr |
|
| 138 |
|
simprr |
|
| 139 |
|
eqid |
|
| 140 |
|
eqid |
|
| 141 |
|
eqid |
|
| 142 |
1 112 113 135 136 137 138 139 140 141
|
cantnflem1 |
|
| 143 |
|
fvex |
|
| 144 |
143
|
epeli |
|
| 145 |
142 144
|
sylibr |
|
| 146 |
145
|
expr |
|
| 147 |
146
|
ralrimivva |
|
| 148 |
|
soisoi |
|
| 149 |
5 13 111 147 148
|
syl22anc |
|