Metamath Proof Explorer


Theorem cantnf

Description: The Cantor Normal Form theorem. The function ( A CNF B ) , which maps a finitely supported function from B to A to the sum ( ( A ^o f ( a 1 ) ) o. a 1 ) +o ( ( A ^o f ( a 2 ) ) o. a 2 ) +o ... over all indices a < B such that f ( a ) is nonzero, is an order isomorphism from the ordering T of finitely supported functions to the set ( A ^o B ) under the natural order. Setting A = _om and letting B be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres , implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
Assertion cantnf φACNFBIsomT,ESA𝑜B

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 1 2 3 4 oemapso φTOrS
6 oecl AOnBOnA𝑜BOn
7 2 3 6 syl2anc φA𝑜BOn
8 eloni A𝑜BOnOrdA𝑜B
9 7 8 syl φOrdA𝑜B
10 ordwe OrdA𝑜BEWeA𝑜B
11 weso EWeA𝑜BEOrA𝑜B
12 sopo EOrA𝑜BEPoA𝑜B
13 9 10 11 12 4syl φEPoA𝑜B
14 1 2 3 cantnff φACNFB:SA𝑜B
15 14 frnd φranACNFBA𝑜B
16 onss A𝑜BOnA𝑜BOn
17 7 16 syl φA𝑜BOn
18 17 sseld φtA𝑜BtOn
19 eleq1w t=ytA𝑜ByA𝑜B
20 eleq1w t=ytranACNFByranACNFB
21 19 20 imbi12d t=ytA𝑜BtranACNFByA𝑜ByranACNFB
22 21 imbi2d t=yφtA𝑜BtranACNFBφyA𝑜ByranACNFB
23 r19.21v ytφyA𝑜ByranACNFBφytyA𝑜ByranACNFB
24 ordelss OrdA𝑜BtA𝑜BtA𝑜B
25 9 24 sylan φtA𝑜BtA𝑜B
26 25 sselda φtA𝑜BytyA𝑜B
27 pm5.5 yA𝑜ByA𝑜ByranACNFByranACNFB
28 26 27 syl φtA𝑜BytyA𝑜ByranACNFByranACNFB
29 28 ralbidva φtA𝑜BytyA𝑜ByranACNFBytyranACNFB
30 dfss3 tranACNFBytyranACNFB
31 29 30 bitr4di φtA𝑜BytyA𝑜ByranACNFBtranACNFB
32 eleq1 t=tranACNFBranACNFB
33 2 adantr φtA𝑜BtranACNFBAOn
34 33 adantr φtA𝑜BtranACNFBtAOn
35 3 adantr φtA𝑜BtranACNFBBOn
36 35 adantr φtA𝑜BtranACNFBtBOn
37 simplrl φtA𝑜BtranACNFBttA𝑜B
38 simplrr φtA𝑜BtranACNFBttranACNFB
39 7 adantr φtA𝑜BtranACNFBA𝑜BOn
40 simprl φtA𝑜BtranACNFBtA𝑜B
41 onelon A𝑜BOntA𝑜BtOn
42 39 40 41 syl2anc φtA𝑜BtranACNFBtOn
43 on0eln0 tOntt
44 42 43 syl φtA𝑜BtranACNFBtt
45 44 biimpar φtA𝑜BtranACNFBtt
46 eqid cOn|tA𝑜c=cOn|tA𝑜c
47 eqid ιd|aOnbA𝑜cOn|tA𝑜cd=abA𝑜cOn|tA𝑜c𝑜a+𝑜b=t=ιd|aOnbA𝑜cOn|tA𝑜cd=abA𝑜cOn|tA𝑜c𝑜a+𝑜b=t
48 eqid 1stιd|aOnbA𝑜cOn|tA𝑜cd=abA𝑜cOn|tA𝑜c𝑜a+𝑜b=t=1stιd|aOnbA𝑜cOn|tA𝑜cd=abA𝑜cOn|tA𝑜c𝑜a+𝑜b=t
49 eqid 2ndιd|aOnbA𝑜cOn|tA𝑜cd=abA𝑜cOn|tA𝑜c𝑜a+𝑜b=t=2ndιd|aOnbA𝑜cOn|tA𝑜cd=abA𝑜cOn|tA𝑜c𝑜a+𝑜b=t
50 1 34 36 4 37 38 45 46 47 48 49 cantnflem4 φtA𝑜BtranACNFBttranACNFB
51 fczsupp0 B×supp=
52 51 eqcomi =B×supp
53 oieq2 =B×suppOrdIsoE=OrdIsoEB×supp
54 52 53 ax-mp OrdIsoE=OrdIsoEB×supp
55 ne0i tA𝑜BA𝑜B
56 55 ad2antrl φtA𝑜BtranACNFBA𝑜B
57 oveq1 A=A𝑜B=𝑜B
58 57 neeq1d A=A𝑜B𝑜B
59 56 58 syl5ibcom φtA𝑜BtranACNFBA=𝑜B
60 59 necon2d φtA𝑜BtranACNFB𝑜B=A
61 on0eln0 BOnBB
62 oe0m1 BOnB𝑜B=
63 61 62 bitr3d BOnB𝑜B=
64 35 63 syl φtA𝑜BtranACNFBB𝑜B=
65 on0eln0 AOnAA
66 33 65 syl φtA𝑜BtranACNFBAA
67 60 64 66 3imtr4d φtA𝑜BtranACNFBBA
68 ne0i yBB
69 67 68 impel φtA𝑜BtranACNFByBA
70 fconstmpt B×=yB
71 69 70 fmptd φtA𝑜BtranACNFBB×:BA
72 0ex V
73 72 a1i φV
74 3 73 fczfsuppd φfinSuppB×
75 74 adantr φtA𝑜BtranACNFBfinSuppB×
76 1 2 3 cantnfs φB×SB×:BAfinSuppB×
77 76 adantr φtA𝑜BtranACNFBB×SB×:BAfinSuppB×
78 71 75 77 mpbir2and φtA𝑜BtranACNFBB×S
79 eqid seqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜z=seqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜z
80 1 33 35 54 78 79 cantnfval φtA𝑜BtranACNFBACNFBB×=seqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜zdomOrdIsoE
81 we0 EWe
82 eqid OrdIsoE=OrdIsoE
83 82 oien VEWedomOrdIsoE
84 72 81 83 mp2an domOrdIsoE
85 en0 domOrdIsoEdomOrdIsoE=
86 84 85 mpbi domOrdIsoE=
87 86 fveq2i seqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜zdomOrdIsoE=seqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜z
88 79 seqom0g VseqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜z=
89 72 88 ax-mp seqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜z=
90 87 89 eqtri seqωkV,zVA𝑜OrdIsoEk𝑜B×OrdIsoEk+𝑜zdomOrdIsoE=
91 80 90 eqtrdi φtA𝑜BtranACNFBACNFBB×=
92 14 adantr φtA𝑜BtranACNFBACNFB:SA𝑜B
93 92 ffnd φtA𝑜BtranACNFBACNFBFnS
94 fnfvelrn ACNFBFnSB×SACNFBB×ranACNFB
95 93 78 94 syl2anc φtA𝑜BtranACNFBACNFBB×ranACNFB
96 91 95 eqeltrrd φtA𝑜BtranACNFBranACNFB
97 32 50 96 pm2.61ne φtA𝑜BtranACNFBtranACNFB
98 97 expr φtA𝑜BtranACNFBtranACNFB
99 31 98 sylbid φtA𝑜BytyA𝑜ByranACNFBtranACNFB
100 99 ex φtA𝑜BytyA𝑜ByranACNFBtranACNFB
101 100 com23 φytyA𝑜ByranACNFBtA𝑜BtranACNFB
102 101 a2i φytyA𝑜ByranACNFBφtA𝑜BtranACNFB
103 102 a1i tOnφytyA𝑜ByranACNFBφtA𝑜BtranACNFB
104 23 103 biimtrid tOnytφyA𝑜ByranACNFBφtA𝑜BtranACNFB
105 22 104 tfis2 tOnφtA𝑜BtranACNFB
106 105 com3l φtA𝑜BtOntranACNFB
107 18 106 mpdd φtA𝑜BtranACNFB
108 107 ssrdv φA𝑜BranACNFB
109 15 108 eqssd φranACNFB=A𝑜B
110 dffo2 ACNFB:SontoA𝑜BACNFB:SA𝑜BranACNFB=A𝑜B
111 14 109 110 sylanbrc φACNFB:SontoA𝑜B
112 2 adantr φfSgSfTgAOn
113 3 adantr φfSgSfTgBOn
114 fveq2 z=txz=xt
115 fveq2 z=tyz=yt
116 114 115 eleq12d z=txzyzxtyt
117 eleq1w z=tzwtw
118 117 imbi1d z=tzwxw=ywtwxw=yw
119 118 ralbidv z=twBzwxw=ywwBtwxw=yw
120 116 119 anbi12d z=txzyzwBzwxw=ywxtytwBtwxw=yw
121 120 cbvrexvw zBxzyzwBzwxw=ywtBxtytwBtwxw=yw
122 fveq1 x=uxt=ut
123 fveq1 y=vyt=vt
124 eleq12 xt=utyt=vtxtytutvt
125 122 123 124 syl2an x=uy=vxtytutvt
126 fveq1 x=uxw=uw
127 fveq1 y=vyw=vw
128 126 127 eqeqan12d x=uy=vxw=ywuw=vw
129 128 imbi2d x=uy=vtwxw=ywtwuw=vw
130 129 ralbidv x=uy=vwBtwxw=ywwBtwuw=vw
131 125 130 anbi12d x=uy=vxtytwBtwxw=ywutvtwBtwuw=vw
132 131 rexbidv x=uy=vtBxtytwBtwxw=ywtButvtwBtwuw=vw
133 121 132 bitrid x=uy=vzBxzyzwBzwxw=ywtButvtwBtwuw=vw
134 133 cbvopabv xy|zBxzyzwBzwxw=yw=uv|tButvtwBtwuw=vw
135 4 134 eqtri T=uv|tButvtwBtwuw=vw
136 simprll φfSgSfTgfS
137 simprlr φfSgSfTggS
138 simprr φfSgSfTgfTg
139 eqid cB|fcgc=cB|fcgc
140 eqid OrdIsoEgsupp=OrdIsoEgsupp
141 eqid seqωkV,tVA𝑜OrdIsoEgsuppk𝑜gOrdIsoEgsuppk+𝑜t=seqωkV,tVA𝑜OrdIsoEgsuppk𝑜gOrdIsoEgsuppk+𝑜t
142 1 112 113 135 136 137 138 139 140 141 cantnflem1 φfSgSfTgACNFBfACNFBg
143 fvex ACNFBgV
144 143 epeli ACNFBfEACNFBgACNFBfACNFBg
145 142 144 sylibr φfSgSfTgACNFBfEACNFBg
146 145 expr φfSgSfTgACNFBfEACNFBg
147 146 ralrimivva φfSgSfTgACNFBfEACNFBg
148 soisoi TOrSEPoA𝑜BACNFB:SontoA𝑜BfSgSfTgACNFBfEACNFBgACNFBIsomT,ESA𝑜B
149 5 13 111 147 148 syl22anc φACNFBIsomT,ESA𝑜B