Metamath Proof Explorer


Theorem oemapwe

Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
Assertion oemapwe φ T We S dom OrdIso T S = A 𝑜 B

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 oecl A On B On A 𝑜 B On
6 2 3 5 syl2anc φ A 𝑜 B On
7 eloni A 𝑜 B On Ord A 𝑜 B
8 ordwe Ord A 𝑜 B E We A 𝑜 B
9 6 7 8 3syl φ E We A 𝑜 B
10 1 2 3 4 cantnf φ A CNF B Isom T , E S A 𝑜 B
11 isowe A CNF B Isom T , E S A 𝑜 B T We S E We A 𝑜 B
12 10 11 syl φ T We S E We A 𝑜 B
13 9 12 mpbird φ T We S
14 6 7 syl φ Ord A 𝑜 B
15 isocnv A CNF B Isom T , E S A 𝑜 B A CNF B -1 Isom E , T A 𝑜 B S
16 10 15 syl φ A CNF B -1 Isom E , T A 𝑜 B S
17 ovex A CNF B V
18 17 dmex dom A CNF B V
19 1 18 eqeltri S V
20 exse S V T Se S
21 19 20 ax-mp T Se S
22 eqid OrdIso T S = OrdIso T S
23 22 oieu T We S T Se S Ord A 𝑜 B A CNF B -1 Isom E , T A 𝑜 B S A 𝑜 B = dom OrdIso T S A CNF B -1 = OrdIso T S
24 13 21 23 sylancl φ Ord A 𝑜 B A CNF B -1 Isom E , T A 𝑜 B S A 𝑜 B = dom OrdIso T S A CNF B -1 = OrdIso T S
25 14 16 24 mpbi2and φ A 𝑜 B = dom OrdIso T S A CNF B -1 = OrdIso T S
26 25 simpld φ A 𝑜 B = dom OrdIso T S
27 26 eqcomd φ dom OrdIso T S = A 𝑜 B
28 13 27 jca φ T We S dom OrdIso T S = A 𝑜 B