Metamath Proof Explorer


Theorem cantnffval2

Description: An alternate definition of df-cnf which relies on cantnf . (Note that although the use of S seems self-referential, one can use cantnfdm to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
Assertion cantnffval2 φ A CNF B = OrdIso T S -1

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 1 2 3 4 cantnf φ A CNF B Isom T , E S A 𝑜 B
6 isof1o A CNF B Isom T , E S A 𝑜 B A CNF B : S 1-1 onto A 𝑜 B
7 f1orel A CNF B : S 1-1 onto A 𝑜 B Rel A CNF B
8 5 6 7 3syl φ Rel A CNF B
9 dfrel2 Rel A CNF B A CNF B -1 -1 = A CNF B
10 8 9 sylib φ A CNF B -1 -1 = A CNF B
11 oecl A On B On A 𝑜 B On
12 2 3 11 syl2anc φ A 𝑜 B On
13 eloni A 𝑜 B On Ord A 𝑜 B
14 12 13 syl φ Ord A 𝑜 B
15 isocnv A CNF B Isom T , E S A 𝑜 B A CNF B -1 Isom E , T A 𝑜 B S
16 5 15 syl φ A CNF B -1 Isom E , T A 𝑜 B S
17 1 2 3 4 oemapwe φ T We S dom OrdIso T S = A 𝑜 B
18 17 simpld φ T We S
19 ovex A CNF B V
20 19 dmex dom A CNF B V
21 1 20 eqeltri S V
22 exse S V T Se S
23 21 22 ax-mp T Se S
24 eqid OrdIso T S = OrdIso T S
25 24 oieu T We S T Se S Ord A 𝑜 B A CNF B -1 Isom E , T A 𝑜 B S A 𝑜 B = dom OrdIso T S A CNF B -1 = OrdIso T S
26 18 23 25 sylancl φ Ord A 𝑜 B A CNF B -1 Isom E , T A 𝑜 B S A 𝑜 B = dom OrdIso T S A CNF B -1 = OrdIso T S
27 14 16 26 mpbi2and φ A 𝑜 B = dom OrdIso T S A CNF B -1 = OrdIso T S
28 27 simprd φ A CNF B -1 = OrdIso T S
29 28 cnveqd φ A CNF B -1 -1 = OrdIso T S -1
30 10 29 eqtr3d φ A CNF B = OrdIso T S -1