Metamath Proof Explorer


Definition df-cnf

Description: Define the Cantor normal form function, which takes as input a finitely supported function from y to x and outputs the corresponding member of the ordinal exponential x ^o y . The content of the original Cantor Normal Form theorem is that for x =om this function is a bijection onto om ^o y for any ordinal y (or, since the function restricts naturally to different ordinals, the statement that the composite function is a bijection to On ). More can be said about the function, however, and in particular it is an order isomorphism for a certain easily defined well-ordering of the finitely supported functions, which gives an alternate definition cantnffval2 of this function in terms of df-oi . (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Assertion df-cnf CNF=xOn,yOnfgxy|finSuppgOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnf classCNF
1 vx setvarx
2 con0 classOn
3 vy setvary
4 vf setvarf
5 vg setvarg
6 1 cv setvarx
7 cmap class𝑚
8 3 cv setvary
9 6 8 7 co classxy
10 5 cv setvarg
11 cfsupp classfinSupp
12 c0 class
13 10 12 11 wbr wfffinSuppg
14 13 5 9 crab classgxy|finSuppg
15 cep classE
16 4 cv setvarf
17 csupp classsupp
18 16 12 17 co classsuppf
19 18 15 coi classOrdIsoEfsupp
20 vh setvarh
21 vk setvark
22 cvv classV
23 vz setvarz
24 coe class𝑜
25 20 cv setvarh
26 21 cv setvark
27 26 25 cfv classhk
28 6 27 24 co classx𝑜hk
29 comu class𝑜
30 27 16 cfv classfhk
31 28 30 29 co classx𝑜hk𝑜fhk
32 coa class+𝑜
33 23 cv setvarz
34 31 33 32 co classx𝑜hk𝑜fhk+𝑜z
35 21 23 22 22 34 cmpo classkV,zVx𝑜hk𝑜fhk+𝑜z
36 35 12 cseqom classseqωkV,zVx𝑜hk𝑜fhk+𝑜z
37 25 cdm classdomh
38 37 36 cfv classseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh
39 20 19 38 csb classOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh
40 4 14 39 cmpt classfgxy|finSuppgOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh
41 1 3 2 2 40 cmpo classxOn,yOnfgxy|finSuppgOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh
42 0 41 wceq wffCNF=xOn,yOnfgxy|finSuppgOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh