Step |
Hyp |
Ref |
Expression |
0 |
|
ccnf |
|- CNF |
1 |
|
vx |
|- x |
2 |
|
con0 |
|- On |
3 |
|
vy |
|- y |
4 |
|
vf |
|- f |
5 |
|
vg |
|- g |
6 |
1
|
cv |
|- x |
7 |
|
cmap |
|- ^m |
8 |
3
|
cv |
|- y |
9 |
6 8 7
|
co |
|- ( x ^m y ) |
10 |
5
|
cv |
|- g |
11 |
|
cfsupp |
|- finSupp |
12 |
|
c0 |
|- (/) |
13 |
10 12 11
|
wbr |
|- g finSupp (/) |
14 |
13 5 9
|
crab |
|- { g e. ( x ^m y ) | g finSupp (/) } |
15 |
|
cep |
|- _E |
16 |
4
|
cv |
|- f |
17 |
|
csupp |
|- supp |
18 |
16 12 17
|
co |
|- ( f supp (/) ) |
19 |
18 15
|
coi |
|- OrdIso ( _E , ( f supp (/) ) ) |
20 |
|
vh |
|- h |
21 |
|
vk |
|- k |
22 |
|
cvv |
|- _V |
23 |
|
vz |
|- z |
24 |
|
coe |
|- ^o |
25 |
20
|
cv |
|- h |
26 |
21
|
cv |
|- k |
27 |
26 25
|
cfv |
|- ( h ` k ) |
28 |
6 27 24
|
co |
|- ( x ^o ( h ` k ) ) |
29 |
|
comu |
|- .o |
30 |
27 16
|
cfv |
|- ( f ` ( h ` k ) ) |
31 |
28 30 29
|
co |
|- ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) |
32 |
|
coa |
|- +o |
33 |
23
|
cv |
|- z |
34 |
31 33 32
|
co |
|- ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) |
35 |
21 23 22 22 34
|
cmpo |
|- ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) |
36 |
35 12
|
cseqom |
|- seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) |
37 |
25
|
cdm |
|- dom h |
38 |
37 36
|
cfv |
|- ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) |
39 |
20 19 38
|
csb |
|- [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) |
40 |
4 14 39
|
cmpt |
|- ( f e. { g e. ( x ^m y ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) |
41 |
1 3 2 2 40
|
cmpo |
|- ( x e. On , y e. On |-> ( f e. { g e. ( x ^m y ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
42 |
0 41
|
wceq |
|- CNF = ( x e. On , y e. On |-> ( f e. { g e. ( x ^m y ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |