| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
oemapval.t |
|- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
| 5 |
1 2 3 4
|
cantnf |
|- ( ph -> ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) ) |
| 6 |
|
isof1o |
|- ( ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) -> ( A CNF B ) : S -1-1-onto-> ( A ^o B ) ) |
| 7 |
|
f1orel |
|- ( ( A CNF B ) : S -1-1-onto-> ( A ^o B ) -> Rel ( A CNF B ) ) |
| 8 |
5 6 7
|
3syl |
|- ( ph -> Rel ( A CNF B ) ) |
| 9 |
|
dfrel2 |
|- ( Rel ( A CNF B ) <-> `' `' ( A CNF B ) = ( A CNF B ) ) |
| 10 |
8 9
|
sylib |
|- ( ph -> `' `' ( A CNF B ) = ( A CNF B ) ) |
| 11 |
|
oecl |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
| 12 |
2 3 11
|
syl2anc |
|- ( ph -> ( A ^o B ) e. On ) |
| 13 |
|
eloni |
|- ( ( A ^o B ) e. On -> Ord ( A ^o B ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> Ord ( A ^o B ) ) |
| 15 |
|
isocnv |
|- ( ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) -> `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) |
| 16 |
5 15
|
syl |
|- ( ph -> `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) |
| 17 |
1 2 3 4
|
oemapwe |
|- ( ph -> ( T We S /\ dom OrdIso ( T , S ) = ( A ^o B ) ) ) |
| 18 |
17
|
simpld |
|- ( ph -> T We S ) |
| 19 |
|
ovex |
|- ( A CNF B ) e. _V |
| 20 |
19
|
dmex |
|- dom ( A CNF B ) e. _V |
| 21 |
1 20
|
eqeltri |
|- S e. _V |
| 22 |
|
exse |
|- ( S e. _V -> T Se S ) |
| 23 |
21 22
|
ax-mp |
|- T Se S |
| 24 |
|
eqid |
|- OrdIso ( T , S ) = OrdIso ( T , S ) |
| 25 |
24
|
oieu |
|- ( ( T We S /\ T Se S ) -> ( ( Ord ( A ^o B ) /\ `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) <-> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) ) |
| 26 |
18 23 25
|
sylancl |
|- ( ph -> ( ( Ord ( A ^o B ) /\ `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) <-> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) ) |
| 27 |
14 16 26
|
mpbi2and |
|- ( ph -> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) |
| 28 |
27
|
simprd |
|- ( ph -> `' ( A CNF B ) = OrdIso ( T , S ) ) |
| 29 |
28
|
cnveqd |
|- ( ph -> `' `' ( A CNF B ) = `' OrdIso ( T , S ) ) |
| 30 |
10 29
|
eqtr3d |
|- ( ph -> ( A CNF B ) = `' OrdIso ( T , S ) ) |