Metamath Proof Explorer


Theorem oeord2i

Description: Ordinal exponentiation of the same base at least as large as two preserves the ordering of the exponents. Lemma 3.23 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oeord2i
|- ( ( ( A e. On /\ 1o e. A ) /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) )

Proof

Step Hyp Ref Expression
1 ondif2
 |-  ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) )
2 1 biimpri
 |-  ( ( A e. On /\ 1o e. A ) -> A e. ( On \ 2o ) )
3 2 anim1ci
 |-  ( ( ( A e. On /\ 1o e. A ) /\ C e. On ) -> ( C e. On /\ A e. ( On \ 2o ) ) )
4 oeordi
 |-  ( ( C e. On /\ A e. ( On \ 2o ) ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) )
5 3 4 syl
 |-  ( ( ( A e. On /\ 1o e. A ) /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) )