Metamath Proof Explorer


Theorem oeord2i

Description: Ordinal exponentiation of the same base at least as large as two preserves the ordering of the exponents. Lemma 3.23 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oeord2i ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 → ( 𝐴o 𝐵 ) ∈ ( 𝐴o 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ondif2 ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o𝐴 ) )
2 1 biimpri ( ( 𝐴 ∈ On ∧ 1o𝐴 ) → 𝐴 ∈ ( On ∖ 2o ) )
3 2 anim1ci ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) )
4 oeordi ( ( 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐵𝐶 → ( 𝐴o 𝐵 ) ∈ ( 𝐴o 𝐶 ) ) )
5 3 4 syl ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 → ( 𝐴o 𝐵 ) ∈ ( 𝐴o 𝐶 ) ) )