Description: Ordinal exponentiation of the same base at least as large as two preserves the ordering of the exponents. Lemma 3.23 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeord2i | ⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ondif2 | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) | |
| 2 | 1 | biimpri | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) → 𝐴 ∈ ( On ∖ 2o ) ) | 
| 3 | 2 | anim1ci | ⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) ) | 
| 4 | oeordi | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |