| Step |
Hyp |
Ref |
Expression |
| 1 |
|
offinsupp1.a |
|- ( ph -> A e. V ) |
| 2 |
|
offinsupp1.y |
|- ( ph -> Y e. U ) |
| 3 |
|
offinsupp1.z |
|- ( ph -> Z e. W ) |
| 4 |
|
offinsupp1.f |
|- ( ph -> F : A --> S ) |
| 5 |
|
offinsupp1.g |
|- ( ph -> G : A --> T ) |
| 6 |
|
offinsupp1.1 |
|- ( ph -> F finSupp Y ) |
| 7 |
|
offinsupp1.2 |
|- ( ( ph /\ x e. T ) -> ( Y R x ) = Z ) |
| 8 |
6
|
fsuppimpd |
|- ( ph -> ( F supp Y ) e. Fin ) |
| 9 |
|
ssidd |
|- ( ph -> ( F supp Y ) C_ ( F supp Y ) ) |
| 10 |
9 7 4 5 1 2
|
suppssof1 |
|- ( ph -> ( ( F oF R G ) supp Z ) C_ ( F supp Y ) ) |
| 11 |
8 10
|
ssfid |
|- ( ph -> ( ( F oF R G ) supp Z ) e. Fin ) |
| 12 |
|
ovexd |
|- ( ( ph /\ ( i e. S /\ j e. T ) ) -> ( i R j ) e. _V ) |
| 13 |
|
inidm |
|- ( A i^i A ) = A |
| 14 |
12 4 5 1 1 13
|
off |
|- ( ph -> ( F oF R G ) : A --> _V ) |
| 15 |
14
|
ffund |
|- ( ph -> Fun ( F oF R G ) ) |
| 16 |
|
ovexd |
|- ( ph -> ( F oF R G ) e. _V ) |
| 17 |
|
funisfsupp |
|- ( ( Fun ( F oF R G ) /\ ( F oF R G ) e. _V /\ Z e. W ) -> ( ( F oF R G ) finSupp Z <-> ( ( F oF R G ) supp Z ) e. Fin ) ) |
| 18 |
15 16 3 17
|
syl3anc |
|- ( ph -> ( ( F oF R G ) finSupp Z <-> ( ( F oF R G ) supp Z ) e. Fin ) ) |
| 19 |
11 18
|
mpbird |
|- ( ph -> ( F oF R G ) finSupp Z ) |