| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-s2 |
|- <" A B "> = ( <" A "> ++ <" B "> ) |
| 2 |
|
df-s2 |
|- <" C D "> = ( <" C "> ++ <" D "> ) |
| 3 |
1 2
|
oveq12i |
|- ( <" A B "> oF R <" C D "> ) = ( ( <" A "> ++ <" B "> ) oF R ( <" C "> ++ <" D "> ) ) |
| 4 |
|
simpll |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> A e. S ) |
| 5 |
4
|
s1cld |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" A "> e. Word S ) |
| 6 |
|
simplr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> B e. S ) |
| 7 |
6
|
s1cld |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" B "> e. Word S ) |
| 8 |
|
simprl |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> C e. T ) |
| 9 |
8
|
s1cld |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" C "> e. Word T ) |
| 10 |
|
simprr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> D e. T ) |
| 11 |
10
|
s1cld |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" D "> e. Word T ) |
| 12 |
|
s1len |
|- ( # ` <" A "> ) = 1 |
| 13 |
|
s1len |
|- ( # ` <" C "> ) = 1 |
| 14 |
12 13
|
eqtr4i |
|- ( # ` <" A "> ) = ( # ` <" C "> ) |
| 15 |
14
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( # ` <" A "> ) = ( # ` <" C "> ) ) |
| 16 |
|
s1len |
|- ( # ` <" B "> ) = 1 |
| 17 |
|
s1len |
|- ( # ` <" D "> ) = 1 |
| 18 |
16 17
|
eqtr4i |
|- ( # ` <" B "> ) = ( # ` <" D "> ) |
| 19 |
18
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( # ` <" B "> ) = ( # ` <" D "> ) ) |
| 20 |
5 7 9 11 15 19
|
ofccat |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( ( <" A "> ++ <" B "> ) oF R ( <" C "> ++ <" D "> ) ) = ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) ) |
| 21 |
3 20
|
eqtrid |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" A B "> oF R <" C D "> ) = ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) ) |
| 22 |
|
ofs1 |
|- ( ( A e. S /\ C e. T ) -> ( <" A "> oF R <" C "> ) = <" ( A R C ) "> ) |
| 23 |
4 8 22
|
syl2anc |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" A "> oF R <" C "> ) = <" ( A R C ) "> ) |
| 24 |
|
ofs1 |
|- ( ( B e. S /\ D e. T ) -> ( <" B "> oF R <" D "> ) = <" ( B R D ) "> ) |
| 25 |
6 10 24
|
syl2anc |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" B "> oF R <" D "> ) = <" ( B R D ) "> ) |
| 26 |
23 25
|
oveq12d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) = ( <" ( A R C ) "> ++ <" ( B R D ) "> ) ) |
| 27 |
|
df-s2 |
|- <" ( A R C ) ( B R D ) "> = ( <" ( A R C ) "> ++ <" ( B R D ) "> ) |
| 28 |
26 27
|
eqtr4di |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) = <" ( A R C ) ( B R D ) "> ) |
| 29 |
21 28
|
eqtrd |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" A B "> oF R <" C D "> ) = <" ( A R C ) ( B R D ) "> ) |