Description: Closed form expression of the value of ordinal multiplication for the
cases when the second ordinal is zero, a successor ordinal, or a limit
ordinal. Definition 2.5 of Schloeder p. 4. See om0 , omsuc , and
omlim . (Contributed by RP, 18-Jan-2025)
|- ( ( A e. On /\ B e. On ) -> ( ( B = (/) -> ( A .o B ) = (/) ) /\ ( ( B = suc C /\ C e. On ) -> ( A .o B ) = ( ( A .o C ) +o A ) ) /\ ( Lim B -> ( A .o B ) = U_ c e. B ( A .o c ) ) ) )
|- ( ( A e. On /\ B e. On ) -> ( ( B = (/) -> ( A .o B ) = (/) ) /\ ( ( B = suc C /\ C e. On ) -> ( A .o B ) = ( ( A .o C ) +o A ) ) /\ ( Lim B -> ( A .o B ) = U_ c e. B ( A .o c ) ) ) )