Step |
Hyp |
Ref |
Expression |
1 |
|
oe0 |
|- ( A e. On -> ( A ^o (/) ) = 1o ) |
2 |
|
oesuc |
|- ( ( A e. On /\ C e. On ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
3 |
|
oelim |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ (/) e. A ) -> ( A ^o B ) = U_ c e. B ( A ^o c ) ) |
4 |
|
simpr |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ (/) e. A ) -> (/) e. A ) |
5 |
4
|
iftrued |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ (/) e. A ) -> if ( (/) e. A , U_ c e. B ( A ^o c ) , (/) ) = U_ c e. B ( A ^o c ) ) |
6 |
3 5
|
eqtr4d |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ (/) e. A ) -> ( A ^o B ) = if ( (/) e. A , U_ c e. B ( A ^o c ) , (/) ) ) |
7 |
|
simpl |
|- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> A e. On ) |
8 |
|
0elon |
|- (/) e. On |
9 |
|
ontri1 |
|- ( ( A e. On /\ (/) e. On ) -> ( A C_ (/) <-> -. (/) e. A ) ) |
10 |
|
ss0 |
|- ( A C_ (/) -> A = (/) ) |
11 |
9 10
|
syl6bir |
|- ( ( A e. On /\ (/) e. On ) -> ( -. (/) e. A -> A = (/) ) ) |
12 |
7 8 11
|
sylancl |
|- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( -. (/) e. A -> A = (/) ) ) |
13 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
14 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
15 |
14
|
biimpd |
|- ( B e. On -> ( (/) e. B -> ( (/) ^o B ) = (/) ) ) |
16 |
|
0ellim |
|- ( Lim B -> (/) e. B ) |
17 |
15 16
|
impel |
|- ( ( B e. On /\ Lim B ) -> ( (/) ^o B ) = (/) ) |
18 |
17
|
adantl |
|- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( (/) ^o B ) = (/) ) |
19 |
13 18
|
sylan9eqr |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ A = (/) ) -> ( A ^o B ) = (/) ) |
20 |
19
|
ex |
|- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( A = (/) -> ( A ^o B ) = (/) ) ) |
21 |
12 20
|
syld |
|- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( -. (/) e. A -> ( A ^o B ) = (/) ) ) |
22 |
21
|
imp |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ -. (/) e. A ) -> ( A ^o B ) = (/) ) |
23 |
|
simpr |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ -. (/) e. A ) -> -. (/) e. A ) |
24 |
23
|
iffalsed |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ -. (/) e. A ) -> if ( (/) e. A , U_ c e. B ( A ^o c ) , (/) ) = (/) ) |
25 |
22 24
|
eqtr4d |
|- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ -. (/) e. A ) -> ( A ^o B ) = if ( (/) e. A , U_ c e. B ( A ^o c ) , (/) ) ) |
26 |
6 25
|
pm2.61dan |
|- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( A ^o B ) = if ( (/) e. A , U_ c e. B ( A ^o c ) , (/) ) ) |
27 |
26
|
anassrs |
|- ( ( ( A e. On /\ B e. On ) /\ Lim B ) -> ( A ^o B ) = if ( (/) e. A , U_ c e. B ( A ^o c ) , (/) ) ) |
28 |
1 2 27
|
onov0suclim |
|- ( ( A e. On /\ B e. On ) -> ( ( B = (/) -> ( A ^o B ) = 1o ) /\ ( ( B = suc C /\ C e. On ) -> ( A ^o B ) = ( ( A ^o C ) .o A ) ) /\ ( Lim B -> ( A ^o B ) = if ( (/) e. A , U_ c e. B ( A ^o c ) , (/) ) ) ) ) |