Step |
Hyp |
Ref |
Expression |
1 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
2 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
3 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) ) |
4 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ 𝐴 ) |
5 |
4
|
iftrued |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → if ( ∅ ∈ 𝐴 , ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) , ∅ ) = ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) ) |
6 |
3 5
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = if ( ∅ ∈ 𝐴 , ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) , ∅ ) ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → 𝐴 ∈ On ) |
8 |
|
0elon |
⊢ ∅ ∈ On |
9 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ On ) → ( 𝐴 ⊆ ∅ ↔ ¬ ∅ ∈ 𝐴 ) ) |
10 |
|
ss0 |
⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) |
11 |
9 10
|
biimtrrdi |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ On ) → ( ¬ ∅ ∈ 𝐴 → 𝐴 = ∅ ) ) |
12 |
7 8 11
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( ¬ ∅ ∈ 𝐴 → 𝐴 = ∅ ) ) |
13 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
14 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
15 |
14
|
biimpd |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 → ( ∅ ↑o 𝐵 ) = ∅ ) ) |
16 |
|
0ellim |
⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) |
17 |
15 16
|
impel |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
19 |
13 18
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ∅ ) |
20 |
19
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ∅ ) ) |
21 |
12 20
|
syld |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( ¬ ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝐵 ) = ∅ ) ) |
22 |
21
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ¬ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∅ ) |
23 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ¬ ∅ ∈ 𝐴 ) → ¬ ∅ ∈ 𝐴 ) |
24 |
23
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ¬ ∅ ∈ 𝐴 ) → if ( ∅ ∈ 𝐴 , ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) , ∅ ) = ∅ ) |
25 |
22 24
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ¬ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = if ( ∅ ∈ 𝐴 , ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) , ∅ ) ) |
26 |
6 25
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = if ( ∅ ∈ 𝐴 , ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) , ∅ ) ) |
27 |
26
|
anassrs |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝐵 ) → ( 𝐴 ↑o 𝐵 ) = if ( ∅ ∈ 𝐴 , ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) , ∅ ) ) |
28 |
1 2 27
|
onov0suclim |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 = ∅ → ( 𝐴 ↑o 𝐵 ) = 1o ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐵 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ∧ ( Lim 𝐵 → ( 𝐴 ↑o 𝐵 ) = if ( ∅ ∈ 𝐴 , ∪ 𝑐 ∈ 𝐵 ( 𝐴 ↑o 𝑐 ) , ∅ ) ) ) ) |