Description: Closed form expression of the value of ordinal exponentiation for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.6 of Schloeder p. 4. See oe0 , oesuc , oe0m1 , and oelim . (Contributed by RP, 18-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oe0suclim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oe0 | |
|
2 | oesuc | |
|
3 | oelim | |
|
4 | simpr | |
|
5 | 4 | iftrued | |
6 | 3 5 | eqtr4d | |
7 | simpl | |
|
8 | 0elon | |
|
9 | ontri1 | |
|
10 | ss0 | |
|
11 | 9 10 | syl6bir | |
12 | 7 8 11 | sylancl | |
13 | oveq1 | |
|
14 | oe0m1 | |
|
15 | 14 | biimpd | |
16 | 0ellim | |
|
17 | 15 16 | impel | |
18 | 17 | adantl | |
19 | 13 18 | sylan9eqr | |
20 | 19 | ex | |
21 | 12 20 | syld | |
22 | 21 | imp | |
23 | simpr | |
|
24 | 23 | iffalsed | |
25 | 22 24 | eqtr4d | |
26 | 6 25 | pm2.61dan | |
27 | 26 | anassrs | |
28 | 1 2 27 | onov0suclim | |