Metamath Proof Explorer


Theorem oe0suclim

Description: Closed form expression of the value of ordinal exponentiation for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.6 of Schloeder p. 4. See oe0 , oesuc , oe0m1 , and oelim . (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion oe0suclim AOnBOnB=A𝑜B=1𝑜B=sucCCOnA𝑜B=A𝑜C𝑜ALimBA𝑜B=ifAcBA𝑜c

Proof

Step Hyp Ref Expression
1 oe0 AOnA𝑜=1𝑜
2 oesuc AOnCOnA𝑜sucC=A𝑜C𝑜A
3 oelim AOnBOnLimBAA𝑜B=cBA𝑜c
4 simpr AOnBOnLimBAA
5 4 iftrued AOnBOnLimBAifAcBA𝑜c=cBA𝑜c
6 3 5 eqtr4d AOnBOnLimBAA𝑜B=ifAcBA𝑜c
7 simpl AOnBOnLimBAOn
8 0elon On
9 ontri1 AOnOnA¬A
10 ss0 AA=
11 9 10 syl6bir AOnOn¬AA=
12 7 8 11 sylancl AOnBOnLimB¬AA=
13 oveq1 A=A𝑜B=𝑜B
14 oe0m1 BOnB𝑜B=
15 14 biimpd BOnB𝑜B=
16 0ellim LimBB
17 15 16 impel BOnLimB𝑜B=
18 17 adantl AOnBOnLimB𝑜B=
19 13 18 sylan9eqr AOnBOnLimBA=A𝑜B=
20 19 ex AOnBOnLimBA=A𝑜B=
21 12 20 syld AOnBOnLimB¬AA𝑜B=
22 21 imp AOnBOnLimB¬AA𝑜B=
23 simpr AOnBOnLimB¬A¬A
24 23 iffalsed AOnBOnLimB¬AifAcBA𝑜c=
25 22 24 eqtr4d AOnBOnLimB¬AA𝑜B=ifAcBA𝑜c
26 6 25 pm2.61dan AOnBOnLimBA𝑜B=ifAcBA𝑜c
27 26 anassrs AOnBOnLimBA𝑜B=ifAcBA𝑜c
28 1 2 27 onov0suclim AOnBOnB=A𝑜B=1𝑜B=sucCCOnA𝑜B=A𝑜C𝑜ALimBA𝑜B=ifAcBA𝑜c