| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							om2uz.1 | 
							 |-  C e. ZZ  | 
						
						
							| 2 | 
							
								
							 | 
							om2uz.2 | 
							 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om )  | 
						
						
							| 3 | 
							
								
							 | 
							ordom | 
							 |-  Ord _om  | 
						
						
							| 4 | 
							
								1 2
							 | 
							om2uzisoi | 
							 |-  G Isom _E , < ( _om , ( ZZ>= ` C ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							pm3.2i | 
							 |-  ( Ord _om /\ G Isom _E , < ( _om , ( ZZ>= ` C ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ordwe | 
							 |-  ( Ord _om -> _E We _om )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							ax-mp | 
							 |-  _E We _om  | 
						
						
							| 8 | 
							
								
							 | 
							isowe | 
							 |-  ( G Isom _E , < ( _om , ( ZZ>= ` C ) ) -> ( _E We _om <-> < We ( ZZ>= ` C ) ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							ax-mp | 
							 |-  ( _E We _om <-> < We ( ZZ>= ` C ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							mpbi | 
							 |-  < We ( ZZ>= ` C )  | 
						
						
							| 11 | 
							
								
							 | 
							fvex | 
							 |-  ( ZZ>= ` C ) e. _V  | 
						
						
							| 12 | 
							
								
							 | 
							exse | 
							 |-  ( ( ZZ>= ` C ) e. _V -> < Se ( ZZ>= ` C ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							ax-mp | 
							 |-  < Se ( ZZ>= ` C )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  OrdIso ( < , ( ZZ>= ` C ) ) = OrdIso ( < , ( ZZ>= ` C ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oieu | 
							 |-  ( ( < We ( ZZ>= ` C ) /\ < Se ( ZZ>= ` C ) ) -> ( ( Ord _om /\ G Isom _E , < ( _om , ( ZZ>= ` C ) ) ) <-> ( _om = dom OrdIso ( < , ( ZZ>= ` C ) ) /\ G = OrdIso ( < , ( ZZ>= ` C ) ) ) ) )  | 
						
						
							| 16 | 
							
								10 13 15
							 | 
							mp2an | 
							 |-  ( ( Ord _om /\ G Isom _E , < ( _om , ( ZZ>= ` C ) ) ) <-> ( _om = dom OrdIso ( < , ( ZZ>= ` C ) ) /\ G = OrdIso ( < , ( ZZ>= ` C ) ) ) )  | 
						
						
							| 17 | 
							
								5 16
							 | 
							mpbi | 
							 |-  ( _om = dom OrdIso ( < , ( ZZ>= ` C ) ) /\ G = OrdIso ( < , ( ZZ>= ` C ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							simpri | 
							 |-  G = OrdIso ( < , ( ZZ>= ` C ) )  |