Metamath Proof Explorer


Theorem onnoi

Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023)

Ref Expression
Hypothesis onnoi.on
|- A e. On
Assertion onnoi
|- ( A X. { 2o } ) e. No

Proof

Step Hyp Ref Expression
1 onnoi.on
 |-  A e. On
2 onno
 |-  ( A e. On -> ( A X. { 2o } ) e. No )
3 1 2 ax-mp
 |-  ( A X. { 2o } ) e. No