Metamath Proof Explorer


Theorem onnoi

Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023)

Ref Expression
Hypothesis onnoi.on 𝐴 ∈ On
Assertion onnoi ( 𝐴 × { 2o } ) ∈ No

Proof

Step Hyp Ref Expression
1 onnoi.on 𝐴 ∈ On
2 onno ( 𝐴 ∈ On → ( 𝐴 × { 2o } ) ∈ No )
3 1 2 ax-mp ( 𝐴 × { 2o } ) ∈ No