Metamath Proof Explorer


Theorem onsucsuccmp

Description: The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015)

Ref Expression
Assertion onsucsuccmp
|- ( A e. On -> suc suc A e. Comp )

Proof

Step Hyp Ref Expression
1 suceq
 |-  ( A = if ( A e. On , A , (/) ) -> suc A = suc if ( A e. On , A , (/) ) )
2 suceq
 |-  ( suc A = suc if ( A e. On , A , (/) ) -> suc suc A = suc suc if ( A e. On , A , (/) ) )
3 1 2 syl
 |-  ( A = if ( A e. On , A , (/) ) -> suc suc A = suc suc if ( A e. On , A , (/) ) )
4 3 eleq1d
 |-  ( A = if ( A e. On , A , (/) ) -> ( suc suc A e. Comp <-> suc suc if ( A e. On , A , (/) ) e. Comp ) )
5 0elon
 |-  (/) e. On
6 5 elimel
 |-  if ( A e. On , A , (/) ) e. On
7 6 onsucsuccmpi
 |-  suc suc if ( A e. On , A , (/) ) e. Comp
8 4 7 dedth
 |-  ( A e. On -> suc suc A e. Comp )