Step |
Hyp |
Ref |
Expression |
1 |
|
suceq |
|- ( A = if ( A e. On , A , (/) ) -> suc A = suc if ( A e. On , A , (/) ) ) |
2 |
|
suceq |
|- ( suc A = suc if ( A e. On , A , (/) ) -> suc suc A = suc suc if ( A e. On , A , (/) ) ) |
3 |
1 2
|
syl |
|- ( A = if ( A e. On , A , (/) ) -> suc suc A = suc suc if ( A e. On , A , (/) ) ) |
4 |
3
|
eleq1d |
|- ( A = if ( A e. On , A , (/) ) -> ( suc suc A e. Comp <-> suc suc if ( A e. On , A , (/) ) e. Comp ) ) |
5 |
|
0elon |
|- (/) e. On |
6 |
5
|
elimel |
|- if ( A e. On , A , (/) ) e. On |
7 |
6
|
onsucsuccmpi |
|- suc suc if ( A e. On , A , (/) ) e. Comp |
8 |
4 7
|
dedth |
|- ( A e. On -> suc suc A e. Comp ) |