Metamath Proof Explorer


Theorem onsucsuccmp

Description: The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015)

Ref Expression
Assertion onsucsuccmp A On suc suc A Comp

Proof

Step Hyp Ref Expression
1 suceq A = if A On A suc A = suc if A On A
2 suceq suc A = suc if A On A suc suc A = suc suc if A On A
3 1 2 syl A = if A On A suc suc A = suc suc if A On A
4 3 eleq1d A = if A On A suc suc A Comp suc suc if A On A Comp
5 0elon On
6 5 elimel if A On A On
7 6 onsucsuccmpi suc suc if A On A Comp
8 4 7 dedth A On suc suc A Comp