Metamath Proof Explorer


Theorem onsucsuccmpi

Description: The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015)

Ref Expression
Hypothesis onsucsuccmpi.1 AOn
Assertion onsucsuccmpi sucsucAComp

Proof

Step Hyp Ref Expression
1 onsucsuccmpi.1 AOn
2 1 onsuci sucAOn
3 onsuctop sucAOnsucsucATop
4 2 3 ax-mp sucsucATop
5 1 onirri ¬AA
6 1 1 onsucssi AAsucAA
7 5 6 mtbi ¬sucAA
8 sseq1 sucA=ysucAAyA
9 7 8 mtbii sucA=y¬yA
10 elpwi y𝒫sucAysucA
11 10 unissd y𝒫sucAysucA
12 1 onunisuci sucA=A
13 11 12 sseqtrdi y𝒫sucAyA
14 9 13 nsyl sucA=y¬y𝒫sucA
15 eldif y𝒫sucAsucA𝒫sucAy𝒫sucAsucA¬y𝒫sucA
16 elpwunsn y𝒫sucAsucA𝒫sucAsucAy
17 15 16 sylbir y𝒫sucAsucA¬y𝒫sucAsucAy
18 17 ex y𝒫sucAsucA¬y𝒫sucAsucAy
19 df-suc sucsucA=sucAsucA
20 19 pweqi 𝒫sucsucA=𝒫sucAsucA
21 18 20 eleq2s y𝒫sucsucA¬y𝒫sucAsucAy
22 snelpwi sucAysucA𝒫y
23 snfi sucAFin
24 23 jctr sucA𝒫ysucA𝒫ysucAFin
25 elin sucA𝒫yFinsucA𝒫ysucAFin
26 24 25 sylibr sucA𝒫ysucA𝒫yFin
27 2 elexi sucAV
28 27 unisn sucA=sucA
29 28 eqcomi sucA=sucA
30 unieq z=sucAz=sucA
31 30 rspceeqv sucA𝒫yFinsucA=sucAz𝒫yFinsucA=z
32 26 29 31 sylancl sucA𝒫yz𝒫yFinsucA=z
33 22 32 syl sucAyz𝒫yFinsucA=z
34 14 21 33 syl56 y𝒫sucsucAsucA=yz𝒫yFinsucA=z
35 34 rgen y𝒫sucsucAsucA=yz𝒫yFinsucA=z
36 2 onunisuci sucsucA=sucA
37 36 eqcomi sucA=sucsucA
38 37 iscmp sucsucACompsucsucATopy𝒫sucsucAsucA=yz𝒫yFinsucA=z
39 4 35 38 mpbir2an sucsucAComp