Metamath Proof Explorer


Theorem onsucsuccmpi

Description: The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015)

Ref Expression
Hypothesis onsucsuccmpi.1 𝐴 ∈ On
Assertion onsucsuccmpi suc suc 𝐴 ∈ Comp

Proof

Step Hyp Ref Expression
1 onsucsuccmpi.1 𝐴 ∈ On
2 1 onsuci suc 𝐴 ∈ On
3 onsuctop ( suc 𝐴 ∈ On → suc suc 𝐴 ∈ Top )
4 2 3 ax-mp suc suc 𝐴 ∈ Top
5 1 onirri ¬ 𝐴𝐴
6 1 1 onsucssi ( 𝐴𝐴 ↔ suc 𝐴𝐴 )
7 5 6 mtbi ¬ suc 𝐴𝐴
8 sseq1 ( suc 𝐴 = 𝑦 → ( suc 𝐴𝐴 𝑦𝐴 ) )
9 7 8 mtbii ( suc 𝐴 = 𝑦 → ¬ 𝑦𝐴 )
10 elpwi ( 𝑦 ∈ 𝒫 suc 𝐴𝑦 ⊆ suc 𝐴 )
11 10 unissd ( 𝑦 ∈ 𝒫 suc 𝐴 𝑦 suc 𝐴 )
12 1 onunisuci suc 𝐴 = 𝐴
13 11 12 sseqtrdi ( 𝑦 ∈ 𝒫 suc 𝐴 𝑦𝐴 )
14 9 13 nsyl ( suc 𝐴 = 𝑦 → ¬ 𝑦 ∈ 𝒫 suc 𝐴 )
15 eldif ( 𝑦 ∈ ( 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∖ 𝒫 suc 𝐴 ) ↔ ( 𝑦 ∈ 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴 ) )
16 elpwunsn ( 𝑦 ∈ ( 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∖ 𝒫 suc 𝐴 ) → suc 𝐴𝑦 )
17 15 16 sylbir ( ( 𝑦 ∈ 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴 ) → suc 𝐴𝑦 )
18 17 ex ( 𝑦 ∈ 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) → ( ¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴𝑦 ) )
19 df-suc suc suc 𝐴 = ( suc 𝐴 ∪ { suc 𝐴 } )
20 19 pweqi 𝒫 suc suc 𝐴 = 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } )
21 18 20 eleq2s ( 𝑦 ∈ 𝒫 suc suc 𝐴 → ( ¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴𝑦 ) )
22 snelpwi ( suc 𝐴𝑦 → { suc 𝐴 } ∈ 𝒫 𝑦 )
23 snfi { suc 𝐴 } ∈ Fin
24 23 jctr ( { suc 𝐴 } ∈ 𝒫 𝑦 → ( { suc 𝐴 } ∈ 𝒫 𝑦 ∧ { suc 𝐴 } ∈ Fin ) )
25 elin ( { suc 𝐴 } ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( { suc 𝐴 } ∈ 𝒫 𝑦 ∧ { suc 𝐴 } ∈ Fin ) )
26 24 25 sylibr ( { suc 𝐴 } ∈ 𝒫 𝑦 → { suc 𝐴 } ∈ ( 𝒫 𝑦 ∩ Fin ) )
27 2 elexi suc 𝐴 ∈ V
28 27 unisn { suc 𝐴 } = suc 𝐴
29 28 eqcomi suc 𝐴 = { suc 𝐴 }
30 unieq ( 𝑧 = { suc 𝐴 } → 𝑧 = { suc 𝐴 } )
31 30 rspceeqv ( ( { suc 𝐴 } ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ suc 𝐴 = { suc 𝐴 } ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = 𝑧 )
32 26 29 31 sylancl ( { suc 𝐴 } ∈ 𝒫 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = 𝑧 )
33 22 32 syl ( suc 𝐴𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = 𝑧 )
34 14 21 33 syl56 ( 𝑦 ∈ 𝒫 suc suc 𝐴 → ( suc 𝐴 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = 𝑧 ) )
35 34 rgen 𝑦 ∈ 𝒫 suc suc 𝐴 ( suc 𝐴 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = 𝑧 )
36 2 onunisuci suc suc 𝐴 = suc 𝐴
37 36 eqcomi suc 𝐴 = suc suc 𝐴
38 37 iscmp ( suc suc 𝐴 ∈ Comp ↔ ( suc suc 𝐴 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 suc suc 𝐴 ( suc 𝐴 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = 𝑧 ) ) )
39 4 35 38 mpbir2an suc suc 𝐴 ∈ Comp