| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onsucsuccmpi.1 |
⊢ 𝐴 ∈ On |
| 2 |
1
|
onsuci |
⊢ suc 𝐴 ∈ On |
| 3 |
|
onsuctop |
⊢ ( suc 𝐴 ∈ On → suc suc 𝐴 ∈ Top ) |
| 4 |
2 3
|
ax-mp |
⊢ suc suc 𝐴 ∈ Top |
| 5 |
1
|
onirri |
⊢ ¬ 𝐴 ∈ 𝐴 |
| 6 |
1 1
|
onsucssi |
⊢ ( 𝐴 ∈ 𝐴 ↔ suc 𝐴 ⊆ 𝐴 ) |
| 7 |
5 6
|
mtbi |
⊢ ¬ suc 𝐴 ⊆ 𝐴 |
| 8 |
|
sseq1 |
⊢ ( suc 𝐴 = ∪ 𝑦 → ( suc 𝐴 ⊆ 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) ) |
| 9 |
7 8
|
mtbii |
⊢ ( suc 𝐴 = ∪ 𝑦 → ¬ ∪ 𝑦 ⊆ 𝐴 ) |
| 10 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 suc 𝐴 → 𝑦 ⊆ suc 𝐴 ) |
| 11 |
10
|
unissd |
⊢ ( 𝑦 ∈ 𝒫 suc 𝐴 → ∪ 𝑦 ⊆ ∪ suc 𝐴 ) |
| 12 |
1
|
onunisuci |
⊢ ∪ suc 𝐴 = 𝐴 |
| 13 |
11 12
|
sseqtrdi |
⊢ ( 𝑦 ∈ 𝒫 suc 𝐴 → ∪ 𝑦 ⊆ 𝐴 ) |
| 14 |
9 13
|
nsyl |
⊢ ( suc 𝐴 = ∪ 𝑦 → ¬ 𝑦 ∈ 𝒫 suc 𝐴 ) |
| 15 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∖ 𝒫 suc 𝐴 ) ↔ ( 𝑦 ∈ 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴 ) ) |
| 16 |
|
elpwunsn |
⊢ ( 𝑦 ∈ ( 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∖ 𝒫 suc 𝐴 ) → suc 𝐴 ∈ 𝑦 ) |
| 17 |
15 16
|
sylbir |
⊢ ( ( 𝑦 ∈ 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴 ) → suc 𝐴 ∈ 𝑦 ) |
| 18 |
17
|
ex |
⊢ ( 𝑦 ∈ 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) → ( ¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴 ∈ 𝑦 ) ) |
| 19 |
|
df-suc |
⊢ suc suc 𝐴 = ( suc 𝐴 ∪ { suc 𝐴 } ) |
| 20 |
19
|
pweqi |
⊢ 𝒫 suc suc 𝐴 = 𝒫 ( suc 𝐴 ∪ { suc 𝐴 } ) |
| 21 |
18 20
|
eleq2s |
⊢ ( 𝑦 ∈ 𝒫 suc suc 𝐴 → ( ¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴 ∈ 𝑦 ) ) |
| 22 |
|
snelpwi |
⊢ ( suc 𝐴 ∈ 𝑦 → { suc 𝐴 } ∈ 𝒫 𝑦 ) |
| 23 |
|
snfi |
⊢ { suc 𝐴 } ∈ Fin |
| 24 |
23
|
jctr |
⊢ ( { suc 𝐴 } ∈ 𝒫 𝑦 → ( { suc 𝐴 } ∈ 𝒫 𝑦 ∧ { suc 𝐴 } ∈ Fin ) ) |
| 25 |
|
elin |
⊢ ( { suc 𝐴 } ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( { suc 𝐴 } ∈ 𝒫 𝑦 ∧ { suc 𝐴 } ∈ Fin ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( { suc 𝐴 } ∈ 𝒫 𝑦 → { suc 𝐴 } ∈ ( 𝒫 𝑦 ∩ Fin ) ) |
| 27 |
2
|
elexi |
⊢ suc 𝐴 ∈ V |
| 28 |
27
|
unisn |
⊢ ∪ { suc 𝐴 } = suc 𝐴 |
| 29 |
28
|
eqcomi |
⊢ suc 𝐴 = ∪ { suc 𝐴 } |
| 30 |
|
unieq |
⊢ ( 𝑧 = { suc 𝐴 } → ∪ 𝑧 = ∪ { suc 𝐴 } ) |
| 31 |
30
|
rspceeqv |
⊢ ( ( { suc 𝐴 } ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ suc 𝐴 = ∪ { suc 𝐴 } ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = ∪ 𝑧 ) |
| 32 |
26 29 31
|
sylancl |
⊢ ( { suc 𝐴 } ∈ 𝒫 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = ∪ 𝑧 ) |
| 33 |
22 32
|
syl |
⊢ ( suc 𝐴 ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = ∪ 𝑧 ) |
| 34 |
14 21 33
|
syl56 |
⊢ ( 𝑦 ∈ 𝒫 suc suc 𝐴 → ( suc 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = ∪ 𝑧 ) ) |
| 35 |
34
|
rgen |
⊢ ∀ 𝑦 ∈ 𝒫 suc suc 𝐴 ( suc 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = ∪ 𝑧 ) |
| 36 |
2
|
onunisuci |
⊢ ∪ suc suc 𝐴 = suc 𝐴 |
| 37 |
36
|
eqcomi |
⊢ suc 𝐴 = ∪ suc suc 𝐴 |
| 38 |
37
|
iscmp |
⊢ ( suc suc 𝐴 ∈ Comp ↔ ( suc suc 𝐴 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 suc suc 𝐴 ( suc 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) suc 𝐴 = ∪ 𝑧 ) ) ) |
| 39 |
4 35 38
|
mpbir2an |
⊢ suc suc 𝐴 ∈ Comp |