Metamath Proof Explorer


Theorem onuniintrab2

Description: The union of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onuniintrab2
|- ( A e. ~P On -> U. A = |^| { x e. On | A. y e. A y C_ x } )

Proof

Step Hyp Ref Expression
1 elpwb
 |-  ( A e. ~P On <-> ( A e. _V /\ A C_ On ) )
2 onuniintrab
 |-  ( ( A C_ On /\ A e. _V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } )
3 2 ancoms
 |-  ( ( A e. _V /\ A C_ On ) -> U. A = |^| { x e. On | A. y e. A y C_ x } )
4 1 3 sylbi
 |-  ( A e. ~P On -> U. A = |^| { x e. On | A. y e. A y C_ x } )