Metamath Proof Explorer


Theorem oninfint

Description: The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfint
|- ( ( A C_ On /\ A =/= (/) ) -> inf ( A , On , _E ) = |^| A )

Proof

Step Hyp Ref Expression
1 epweon
 |-  _E We On
2 weso
 |-  ( _E We On -> _E Or On )
3 1 2 mp1i
 |-  ( ( A C_ On /\ A =/= (/) ) -> _E Or On )
4 oninton
 |-  ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On )
5 onint
 |-  ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A )
6 intss1
 |-  ( x e. A -> |^| A C_ x )
7 6 adantl
 |-  ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> |^| A C_ x )
8 simpl
 |-  ( ( A C_ On /\ A =/= (/) ) -> A C_ On )
9 8 sselda
 |-  ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> x e. On )
10 ontri1
 |-  ( ( |^| A e. On /\ x e. On ) -> ( |^| A C_ x <-> -. x e. |^| A ) )
11 4 9 10 syl2an2r
 |-  ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( |^| A C_ x <-> -. x e. |^| A ) )
12 7 11 mpbid
 |-  ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x e. |^| A )
13 epelg
 |-  ( |^| A e. On -> ( x _E |^| A <-> x e. |^| A ) )
14 4 13 syl
 |-  ( ( A C_ On /\ A =/= (/) ) -> ( x _E |^| A <-> x e. |^| A ) )
15 14 adantr
 |-  ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( x _E |^| A <-> x e. |^| A ) )
16 12 15 mtbird
 |-  ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x _E |^| A )
17 3 4 5 16 infmin
 |-  ( ( A C_ On /\ A =/= (/) ) -> inf ( A , On , _E ) = |^| A )