Step |
Hyp |
Ref |
Expression |
1 |
|
epweon |
|- _E We On |
2 |
|
weso |
|- ( _E We On -> _E Or On ) |
3 |
1 2
|
mp1i |
|- ( ( A C_ On /\ A =/= (/) ) -> _E Or On ) |
4 |
|
oninton |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
5 |
|
onint |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
6 |
|
intss1 |
|- ( x e. A -> |^| A C_ x ) |
7 |
6
|
adantl |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> |^| A C_ x ) |
8 |
|
simpl |
|- ( ( A C_ On /\ A =/= (/) ) -> A C_ On ) |
9 |
8
|
sselda |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> x e. On ) |
10 |
|
ontri1 |
|- ( ( |^| A e. On /\ x e. On ) -> ( |^| A C_ x <-> -. x e. |^| A ) ) |
11 |
4 9 10
|
syl2an2r |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( |^| A C_ x <-> -. x e. |^| A ) ) |
12 |
7 11
|
mpbid |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x e. |^| A ) |
13 |
|
epelg |
|- ( |^| A e. On -> ( x _E |^| A <-> x e. |^| A ) ) |
14 |
4 13
|
syl |
|- ( ( A C_ On /\ A =/= (/) ) -> ( x _E |^| A <-> x e. |^| A ) ) |
15 |
14
|
adantr |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( x _E |^| A <-> x e. |^| A ) ) |
16 |
12 15
|
mtbird |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x _E |^| A ) |
17 |
3 4 5 16
|
infmin |
|- ( ( A C_ On /\ A =/= (/) ) -> inf ( A , On , _E ) = |^| A ) |