| Step |
Hyp |
Ref |
Expression |
| 1 |
|
epweon |
|- _E We On |
| 2 |
|
weso |
|- ( _E We On -> _E Or On ) |
| 3 |
1 2
|
mp1i |
|- ( ( A C_ On /\ A =/= (/) ) -> _E Or On ) |
| 4 |
|
oninton |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
| 5 |
|
onint |
|- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
| 6 |
|
intss1 |
|- ( x e. A -> |^| A C_ x ) |
| 7 |
6
|
adantl |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> |^| A C_ x ) |
| 8 |
|
simpl |
|- ( ( A C_ On /\ A =/= (/) ) -> A C_ On ) |
| 9 |
8
|
sselda |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> x e. On ) |
| 10 |
|
ontri1 |
|- ( ( |^| A e. On /\ x e. On ) -> ( |^| A C_ x <-> -. x e. |^| A ) ) |
| 11 |
4 9 10
|
syl2an2r |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( |^| A C_ x <-> -. x e. |^| A ) ) |
| 12 |
7 11
|
mpbid |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x e. |^| A ) |
| 13 |
|
epelg |
|- ( |^| A e. On -> ( x _E |^| A <-> x e. |^| A ) ) |
| 14 |
4 13
|
syl |
|- ( ( A C_ On /\ A =/= (/) ) -> ( x _E |^| A <-> x e. |^| A ) ) |
| 15 |
14
|
adantr |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> ( x _E |^| A <-> x e. |^| A ) ) |
| 16 |
12 15
|
mtbird |
|- ( ( ( A C_ On /\ A =/= (/) ) /\ x e. A ) -> -. x _E |^| A ) |
| 17 |
3 4 5 16
|
infmin |
|- ( ( A C_ On /\ A =/= (/) ) -> inf ( A , On , _E ) = |^| A ) |