Step |
Hyp |
Ref |
Expression |
1 |
|
epweon |
⊢ E We On |
2 |
|
weso |
⊢ ( E We On → E Or On ) |
3 |
1 2
|
mp1i |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → E Or On ) |
4 |
|
oninton |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) |
5 |
|
onint |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) |
6 |
|
intss1 |
⊢ ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ∩ 𝐴 ⊆ 𝑥 ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ On ) |
9 |
8
|
sselda |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
10 |
|
ontri1 |
⊢ ( ( ∩ 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∩ 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ∩ 𝐴 ) ) |
11 |
4 9 10
|
syl2an2r |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∩ 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ∩ 𝐴 ) ) |
12 |
7 11
|
mpbid |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ ∩ 𝐴 ) |
13 |
|
epelg |
⊢ ( ∩ 𝐴 ∈ On → ( 𝑥 E ∩ 𝐴 ↔ 𝑥 ∈ ∩ 𝐴 ) ) |
14 |
4 13
|
syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( 𝑥 E ∩ 𝐴 ↔ 𝑥 ∈ ∩ 𝐴 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 E ∩ 𝐴 ↔ 𝑥 ∈ ∩ 𝐴 ) ) |
16 |
12 15
|
mtbird |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 E ∩ 𝐴 ) |
17 |
3 4 5 16
|
infmin |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , On , E ) = ∩ 𝐴 ) |