Metamath Proof Explorer


Theorem oninfint

Description: The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfint ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , On , E ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 epweon E We On
2 weso ( E We On → E Or On )
3 1 2 mp1i ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → E Or On )
4 oninton ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
5 onint ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )
6 intss1 ( 𝑥𝐴 𝐴𝑥 )
7 6 adantl ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → 𝐴𝑥 )
8 simpl ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ On )
9 8 sselda ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
10 ontri1 ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴 ) )
11 4 9 10 syl2an2r ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴 ) )
12 7 11 mpbid ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ¬ 𝑥 𝐴 )
13 epelg ( 𝐴 ∈ On → ( 𝑥 E 𝐴𝑥 𝐴 ) )
14 4 13 syl ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ( 𝑥 E 𝐴𝑥 𝐴 ) )
15 14 adantr ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ( 𝑥 E 𝐴𝑥 𝐴 ) )
16 12 15 mtbird ( ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → ¬ 𝑥 E 𝐴 )
17 3 4 5 16 infmin ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , On , E ) = 𝐴 )