Description: The infimum of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oninfunirab | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , On , E ) = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oninfint | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , On , E ) = ∩ 𝐴 ) | |
2 | onintunirab | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) | |
3 | 1 2 | eqtrd | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , On , E ) = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) |