Metamath Proof Explorer


Theorem oninfcl2

Description: The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfcl2 ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ∈ On )

Proof

Step Hyp Ref Expression
1 onintunirab ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 = { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } )
2 oninton ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
3 1 2 eqeltrrd ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ On ∣ ∀ 𝑦𝐴 𝑥𝑦 } ∈ On )