Description: The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oninfcl2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onintunirab | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ) | |
2 | oninton | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ On ) | |
3 | 1 2 | eqeltrrd | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } ∈ On ) |