Description: The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oninfcl2 | |- ( ( A C_ On /\ A =/= (/) ) -> U. { x e. On | A. y e. A x C_ y } e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onintunirab | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A = U. { x e. On | A. y e. A x C_ y } ) |
|
2 | oninton | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
|
3 | 1 2 | eqeltrrd | |- ( ( A C_ On /\ A =/= (/) ) -> U. { x e. On | A. y e. A x C_ y } e. On ) |