Metamath Proof Explorer


Theorem oninfcl2

Description: The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfcl2 A On A x On | y A x y On

Proof

Step Hyp Ref Expression
1 onintunirab A On A A = x On | y A x y
2 oninton A On A A On
3 1 2 eqeltrrd A On A x On | y A x y On