Metamath Proof Explorer


Theorem oninfcl2

Description: The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfcl2 AOnAxOn|yAxyOn

Proof

Step Hyp Ref Expression
1 onintunirab AOnAA=xOn|yAxy
2 oninton AOnAAOn
3 1 2 eqeltrrd AOnAxOn|yAxyOn