Step |
Hyp |
Ref |
Expression |
1 |
|
elirrv |
⊢ ¬ 𝑥 ∈ 𝑥 |
2 |
|
pm5.501 |
⊢ ( ¬ 𝑥 ∈ 𝑥 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ( ¬ 𝑥 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) ) |
3 |
1 2
|
mp1i |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ( ¬ 𝑥 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) ) |
4 |
|
elequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑥 ↔ 𝑥 ∈ 𝑥 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑧 ∈ 𝑥 ↔ ¬ 𝑥 ∈ 𝑥 ) ) |
6 |
|
elequ1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) |
8 |
5 7
|
bibi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ( ¬ 𝑥 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) ) |
9 |
3 8
|
bitr4d |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) |
10 |
9
|
biimpd |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) |
11 |
10
|
spimevw |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
12 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ On ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ On ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
15 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ On ) |
17 |
|
ontri1 |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
18 |
14 16 17
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
19 |
18
|
ralbidva |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) ) |
20 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
21 |
19 20
|
bitrdi |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) |
22 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
23 |
|
simpr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ ∪ 𝐴 ⊆ 𝑥 ) → ∪ 𝐴 ⊆ 𝑥 ) |
24 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ ∪ 𝐴 ⊆ 𝑥 ) → 𝑥 ⊆ ∪ 𝐴 ) |
26 |
23 25
|
eqssd |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ ∪ 𝐴 ⊆ 𝑥 ) → ∪ 𝐴 = 𝑥 ) |
27 |
22 26
|
sylan2br |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) → ∪ 𝐴 = 𝑥 ) |
28 |
|
dfuni2 |
⊢ ∪ 𝐴 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 } |
29 |
28
|
eqeq1i |
⊢ ( ∪ 𝐴 = 𝑥 ↔ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 } = 𝑥 ) |
30 |
|
eqabcb |
⊢ ( { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 } = 𝑥 ↔ ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥 ) ) |
31 |
|
bicom |
⊢ ( ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
32 |
31
|
albii |
⊢ ( ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
33 |
29 30 32
|
3bitri |
⊢ ( ∪ 𝐴 = 𝑥 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
34 |
27 33
|
sylib |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
35 |
|
notnotb |
⊢ ( 𝑧 ∈ 𝑥 ↔ ¬ ¬ 𝑧 ∈ 𝑥 ) |
36 |
35
|
bibi1i |
⊢ ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ( ¬ ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
37 |
|
nbbn |
⊢ ( ( ¬ ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ¬ ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
38 |
36 37
|
bitri |
⊢ ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ¬ ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
39 |
38
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ¬ ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
40 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ¬ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
41 |
39 40
|
bitri |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ¬ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
42 |
34 41
|
sylib |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) → ¬ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
43 |
42
|
ex |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 → ¬ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) |
44 |
21 43
|
sylbird |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) |
45 |
44
|
con4d |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) |
46 |
11 45
|
impbid2 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) |
47 |
46
|
ralbidva |
⊢ ( 𝐴 ⊆ On → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) ) |
48 |
|
dminxp |
⊢ ( dom ( E ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 E 𝑦 ) |
49 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
50 |
49
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 E 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
51 |
50
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 E 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
52 |
48 51
|
bitri |
⊢ ( dom ( E ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
53 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
54 |
|
exnal |
⊢ ( ∃ 𝑧 ¬ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
55 |
|
nbbn |
⊢ ( ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ¬ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
56 |
55
|
bicomi |
⊢ ( ¬ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
57 |
56
|
exbii |
⊢ ( ∃ 𝑧 ¬ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
58 |
54 57
|
bitr3i |
⊢ ( ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
59 |
58
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
60 |
53 59
|
bitr3i |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
61 |
|
uniel |
⊢ ( ∪ 𝐴 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
62 |
60 61
|
xchnxbir |
⊢ ( ¬ ∪ 𝐴 ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ( ¬ 𝑧 ∈ 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
63 |
47 52 62
|
3bitr4g |
⊢ ( 𝐴 ⊆ On → ( dom ( E ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ↔ ¬ ∪ 𝐴 ∈ 𝐴 ) ) |