Metamath Proof Explorer


Theorem onexgt

Description: For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025)

Ref Expression
Assertion onexgt ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 onsuc ( 𝐴 ∈ On → suc 𝐴 ∈ On )
2 sucidg ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 )
3 eleq2 ( 𝑥 = suc 𝐴 → ( 𝐴𝑥𝐴 ∈ suc 𝐴 ) )
4 3 rspcev ( ( suc 𝐴 ∈ On ∧ 𝐴 ∈ suc 𝐴 ) → ∃ 𝑥 ∈ On 𝐴𝑥 )
5 1 2 4 syl2anc ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴𝑥 )