Description: For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onexgt | ⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ∈ 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsuc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) | |
2 | sucidg | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 ) | |
3 | eleq2 | ⊢ ( 𝑥 = suc 𝐴 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝐴 ) ) | |
4 | 3 | rspcev | ⊢ ( ( suc 𝐴 ∈ On ∧ 𝐴 ∈ suc 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ 𝑥 ) |
5 | 1 2 4 | syl2anc | ⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ∈ 𝑥 ) |