Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Set Theory and Ordinal Numbers
onexgt
Next ⟩
onexomgt
Metamath Proof Explorer
Ascii
Unicode
Theorem
onexgt
Description:
For any ordinal, there is always a larger ordinal.
(Contributed by
RP
, 1-Feb-2025)
Ref
Expression
Assertion
onexgt
⊢
A
∈
On
→
∃
x
∈
On
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
onsuc
⊢
A
∈
On
→
suc
⁡
A
∈
On
2
sucidg
⊢
A
∈
On
→
A
∈
suc
⁡
A
3
eleq2
⊢
x
=
suc
⁡
A
→
A
∈
x
↔
A
∈
suc
⁡
A
4
3
rspcev
⊢
suc
⁡
A
∈
On
∧
A
∈
suc
⁡
A
→
∃
x
∈
On
A
∈
x
5
1
2
4
syl2anc
⊢
A
∈
On
→
∃
x
∈
On
A
∈
x