Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
⊢ ω ∈ On |
2 |
|
peano1 |
⊢ ∅ ∈ ω |
3 |
2
|
ne0ii |
⊢ ω ≠ ∅ |
4 |
|
omeu |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) → ∃! 𝑐 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) ) |
5 |
1 3 4
|
mp3an13 |
⊢ ( 𝐴 ∈ On → ∃! 𝑐 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) ) |
6 |
|
euex |
⊢ ( ∃! 𝑐 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑐 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) ) |
7 |
|
onsuc |
⊢ ( 𝑎 ∈ On → suc 𝑎 ∈ On ) |
8 |
7
|
adantr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → suc 𝑎 ∈ On ) |
9 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) |
10 |
|
simpr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → 𝑏 ∈ ω ) |
11 |
|
simpl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → 𝑎 ∈ On ) |
12 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝑎 ∈ On ) → ( ω ·o 𝑎 ) ∈ On ) |
13 |
1 11 12
|
sylancr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ω ·o 𝑎 ) ∈ On ) |
14 |
|
oaordi |
⊢ ( ( ω ∈ On ∧ ( ω ·o 𝑎 ) ∈ On ) → ( 𝑏 ∈ ω → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ( ω ·o 𝑎 ) +o ω ) ) ) |
15 |
1 13 14
|
sylancr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( 𝑏 ∈ ω → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ( ω ·o 𝑎 ) +o ω ) ) ) |
16 |
10 15
|
mpd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ( ω ·o 𝑎 ) +o ω ) ) |
17 |
|
omsuc |
⊢ ( ( ω ∈ On ∧ 𝑎 ∈ On ) → ( ω ·o suc 𝑎 ) = ( ( ω ·o 𝑎 ) +o ω ) ) |
18 |
1 11 17
|
sylancr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ω ·o suc 𝑎 ) = ( ( ω ·o 𝑎 ) +o ω ) ) |
19 |
16 18
|
eleqtrrd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ω ·o suc 𝑎 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ω ·o suc 𝑎 ) ) |
21 |
9 20
|
eqeltrrd |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → 𝐴 ∈ ( ω ·o suc 𝑎 ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑎 → ( ω ·o 𝑥 ) = ( ω ·o suc 𝑎 ) ) |
23 |
22
|
eleq2d |
⊢ ( 𝑥 = suc 𝑎 → ( 𝐴 ∈ ( ω ·o 𝑥 ) ↔ 𝐴 ∈ ( ω ·o suc 𝑎 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( suc 𝑎 ∈ On ∧ 𝐴 ∈ ( ω ·o suc 𝑎 ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) |
25 |
8 21 24
|
syl2an2r |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) |
26 |
25
|
ex |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) ) |
27 |
26
|
adantld |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) ) |
28 |
27
|
a1i |
⊢ ( 𝐴 ∈ On → ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) ) ) |
29 |
28
|
rexlimdvv |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) ) |
30 |
29
|
exlimdv |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑐 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) ) |
31 |
6 30
|
syl5 |
⊢ ( 𝐴 ∈ On → ( ∃! 𝑐 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) ) |
32 |
5 31
|
mpd |
⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) |