Metamath Proof Explorer


Theorem onexomgt

Description: For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025)

Ref Expression
Assertion onexomgt ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) )

Proof

Step Hyp Ref Expression
1 omelon ω ∈ On
2 peano1 ∅ ∈ ω
3 2 ne0ii ω ≠ ∅
4 omeu ( ( ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅ ) → ∃! 𝑐𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) )
5 1 3 4 mp3an13 ( 𝐴 ∈ On → ∃! 𝑐𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) )
6 euex ( ∃! 𝑐𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑐𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) )
7 onsuc ( 𝑎 ∈ On → suc 𝑎 ∈ On )
8 7 adantr ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → suc 𝑎 ∈ On )
9 simpr ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 )
10 simpr ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → 𝑏 ∈ ω )
11 simpl ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → 𝑎 ∈ On )
12 omcl ( ( ω ∈ On ∧ 𝑎 ∈ On ) → ( ω ·o 𝑎 ) ∈ On )
13 1 11 12 sylancr ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ω ·o 𝑎 ) ∈ On )
14 oaordi ( ( ω ∈ On ∧ ( ω ·o 𝑎 ) ∈ On ) → ( 𝑏 ∈ ω → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ( ω ·o 𝑎 ) +o ω ) ) )
15 1 13 14 sylancr ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( 𝑏 ∈ ω → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ( ω ·o 𝑎 ) +o ω ) ) )
16 10 15 mpd ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ( ω ·o 𝑎 ) +o ω ) )
17 omsuc ( ( ω ∈ On ∧ 𝑎 ∈ On ) → ( ω ·o suc 𝑎 ) = ( ( ω ·o 𝑎 ) +o ω ) )
18 1 11 17 sylancr ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ω ·o suc 𝑎 ) = ( ( ω ·o 𝑎 ) +o ω ) )
19 16 18 eleqtrrd ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ω ·o suc 𝑎 ) )
20 19 adantr ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ( ( ω ·o 𝑎 ) +o 𝑏 ) ∈ ( ω ·o suc 𝑎 ) )
21 9 20 eqeltrrd ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → 𝐴 ∈ ( ω ·o suc 𝑎 ) )
22 oveq2 ( 𝑥 = suc 𝑎 → ( ω ·o 𝑥 ) = ( ω ·o suc 𝑎 ) )
23 22 eleq2d ( 𝑥 = suc 𝑎 → ( 𝐴 ∈ ( ω ·o 𝑥 ) ↔ 𝐴 ∈ ( ω ·o suc 𝑎 ) ) )
24 23 rspcev ( ( suc 𝑎 ∈ On ∧ 𝐴 ∈ ( ω ·o suc 𝑎 ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) )
25 8 21 24 syl2an2r ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) )
26 25 ex ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) )
27 26 adantld ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) )
28 27 a1i ( 𝐴 ∈ On → ( ( 𝑎 ∈ On ∧ 𝑏 ∈ ω ) → ( ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) ) )
29 28 rexlimdvv ( 𝐴 ∈ On → ( ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) )
30 29 exlimdv ( 𝐴 ∈ On → ( ∃ 𝑐𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) )
31 6 30 syl5 ( 𝐴 ∈ On → ( ∃! 𝑐𝑎 ∈ On ∃ 𝑏 ∈ ω ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ ∧ ( ( ω ·o 𝑎 ) +o 𝑏 ) = 𝐴 ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) ) )
32 5 31 mpd ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ∈ ( ω ·o 𝑥 ) )