Metamath Proof Explorer


Theorem oninfunirab

Description: The infimum of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfunirab AOnAsupAOnE=xOn|yAxy

Proof

Step Hyp Ref Expression
1 oninfint AOnAsupAOnE=A
2 onintunirab AOnAA=xOn|yAxy
3 1 2 eqtrd AOnAsupAOnE=xOn|yAxy