Description: The infimum of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oninfunirab | |- ( ( A C_ On /\ A =/= (/) ) -> inf ( A , On , _E ) = U. { x e. On | A. y e. A x C_ y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oninfint | |- ( ( A C_ On /\ A =/= (/) ) -> inf ( A , On , _E ) = |^| A ) |
|
| 2 | onintunirab | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A = U. { x e. On | A. y e. A x C_ y } ) |
|
| 3 | 1 2 | eqtrd | |- ( ( A C_ On /\ A =/= (/) ) -> inf ( A , On , _E ) = U. { x e. On | A. y e. A x C_ y } ) |