Metamath Proof Explorer


Theorem opelidres

Description: <. A , A >. belongs to a restriction of the identity class iff A belongs to the restricting class. (Contributed by FL, 27-Oct-2008) (Revised by NM, 30-Mar-2016)

Ref Expression
Assertion opelidres
|- ( A e. V -> ( <. A , A >. e. ( _I |` B ) <-> A e. B ) )

Proof

Step Hyp Ref Expression
1 ididg
 |-  ( A e. V -> A _I A )
2 df-br
 |-  ( A _I A <-> <. A , A >. e. _I )
3 1 2 sylib
 |-  ( A e. V -> <. A , A >. e. _I )
4 opelres
 |-  ( A e. V -> ( <. A , A >. e. ( _I |` B ) <-> ( A e. B /\ <. A , A >. e. _I ) ) )
5 3 4 mpbiran2d
 |-  ( A e. V -> ( <. A , A >. e. ( _I |` B ) <-> A e. B ) )