Description: <. A , A >. belongs to a restriction of the identity class iff A belongs to the restricting class. (Contributed by FL, 27-Oct-2008) (Revised by NM, 30-Mar-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelidres | |- ( A e. V -> ( <. A , A >. e. ( _I |` B ) <-> A e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ididg | |- ( A e. V -> A _I A ) |
|
| 2 | df-br | |- ( A _I A <-> <. A , A >. e. _I ) |
|
| 3 | 1 2 | sylib | |- ( A e. V -> <. A , A >. e. _I ) |
| 4 | opelres | |- ( A e. V -> ( <. A , A >. e. ( _I |` B ) <-> ( A e. B /\ <. A , A >. e. _I ) ) ) |
|
| 5 | 3 4 | mpbiran2d | |- ( A e. V -> ( <. A , A >. e. ( _I |` B ) <-> A e. B ) ) |