Metamath Proof Explorer


Theorem opelres

Description: Ordered pair elementhood in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995) (Revised by BJ, 18-Feb-2022) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022)

Ref Expression
Assertion opelres
|- ( C e. V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) )

Proof

Step Hyp Ref Expression
1 df-res
 |-  ( R |` A ) = ( R i^i ( A X. _V ) )
2 1 elin2
 |-  ( <. B , C >. e. ( R |` A ) <-> ( <. B , C >. e. R /\ <. B , C >. e. ( A X. _V ) ) )
3 opelxp
 |-  ( <. B , C >. e. ( A X. _V ) <-> ( B e. A /\ C e. _V ) )
4 elex
 |-  ( C e. V -> C e. _V )
5 4 biantrud
 |-  ( C e. V -> ( B e. A <-> ( B e. A /\ C e. _V ) ) )
6 3 5 bitr4id
 |-  ( C e. V -> ( <. B , C >. e. ( A X. _V ) <-> B e. A ) )
7 6 anbi1cd
 |-  ( C e. V -> ( ( <. B , C >. e. R /\ <. B , C >. e. ( A X. _V ) ) <-> ( B e. A /\ <. B , C >. e. R ) ) )
8 2 7 bitrid
 |-  ( C e. V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) )