Description: <. A , A >. belongs to a restriction of the identity class iff A belongs to the restricting class. (Contributed by FL, 27-Oct-2008) (Revised by NM, 30-Mar-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | opelidres | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝐴 , 𝐴 〉 ∈ ( I ↾ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 I 𝐴 ) | |
2 | df-br | ⊢ ( 𝐴 I 𝐴 ↔ 〈 𝐴 , 𝐴 〉 ∈ I ) | |
3 | 1 2 | sylib | ⊢ ( 𝐴 ∈ 𝑉 → 〈 𝐴 , 𝐴 〉 ∈ I ) |
4 | opelres | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝐴 , 𝐴 〉 ∈ ( I ↾ 𝐵 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 〈 𝐴 , 𝐴 〉 ∈ I ) ) ) | |
5 | 3 4 | mpbiran2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝐴 , 𝐴 〉 ∈ ( I ↾ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) ) |