Metamath Proof Explorer


Theorem opelidres

Description: <. A , A >. belongs to a restriction of the identity class iff A belongs to the restricting class. (Contributed by FL, 27-Oct-2008) (Revised by NM, 30-Mar-2016)

Ref Expression
Assertion opelidres ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐴 ⟩ ∈ ( I ↾ 𝐵 ) ↔ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 ididg ( 𝐴𝑉𝐴 I 𝐴 )
2 df-br ( 𝐴 I 𝐴 ↔ ⟨ 𝐴 , 𝐴 ⟩ ∈ I )
3 1 2 sylib ( 𝐴𝑉 → ⟨ 𝐴 , 𝐴 ⟩ ∈ I )
4 opelres ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐴 ⟩ ∈ ( I ↾ 𝐵 ) ↔ ( 𝐴𝐵 ∧ ⟨ 𝐴 , 𝐴 ⟩ ∈ I ) ) )
5 3 4 mpbiran2d ( 𝐴𝑉 → ( ⟨ 𝐴 , 𝐴 ⟩ ∈ ( I ↾ 𝐵 ) ↔ 𝐴𝐵 ) )