Metamath Proof Explorer


Theorem oppcthinendc

Description: The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets ( oppcendc ) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcthinco.o
|- O = ( oppCat ` C )
oppcthinco.c
|- ( ph -> C e. ThinCat )
oppcthinendc.b
|- B = ( Base ` C )
oppcthinendc.h
|- H = ( Hom ` C )
oppcthinendc.1
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x =/= y -> ( x H y ) = (/) ) )
Assertion oppcthinendc
|- ( ph -> ( comf ` C ) = ( comf ` O ) )

Proof

Step Hyp Ref Expression
1 oppcthinco.o
 |-  O = ( oppCat ` C )
2 oppcthinco.c
 |-  ( ph -> C e. ThinCat )
3 oppcthinendc.b
 |-  B = ( Base ` C )
4 oppcthinendc.h
 |-  H = ( Hom ` C )
5 oppcthinendc.1
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x =/= y -> ( x H y ) = (/) ) )
6 1 3 4 5 oppcendc
 |-  ( ph -> ( Homf ` C ) = ( Homf ` O ) )
7 1 2 6 oppcthinco
 |-  ( ph -> ( comf ` C ) = ( comf ` O ) )