Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
oppcthinendc
Metamath Proof Explorer
Description: The opposite category of a thin category whose morphisms are all
endomorphisms has the same base, hom-sets ( oppcendc ) and composition
operation as the original category. (Contributed by Zhi Wang , 16-Oct-2025)
Ref
Expression
Hypotheses
oppcthinco.o
⊢ 𝑂 = ( oppCat ‘ 𝐶 )
oppcthinco.c
⊢ ( 𝜑 → 𝐶 ∈ ThinCat )
oppcthinendc.b
⊢ 𝐵 = ( Base ‘ 𝐶 )
oppcthinendc.h
⊢ 𝐻 = ( Hom ‘ 𝐶 )
oppcthinendc.1
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) )
Assertion
oppcthinendc
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) )
Proof
Step
Hyp
Ref
Expression
1
oppcthinco.o
⊢ 𝑂 = ( oppCat ‘ 𝐶 )
2
oppcthinco.c
⊢ ( 𝜑 → 𝐶 ∈ ThinCat )
3
oppcthinendc.b
⊢ 𝐵 = ( Base ‘ 𝐶 )
4
oppcthinendc.h
⊢ 𝐻 = ( Hom ‘ 𝐶 )
5
oppcthinendc.1
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) )
6
1 3 4 5
oppcendc
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) )
7
1 2 6
oppcthinco
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) )