| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcthinco.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppcthinco.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 3 |
|
oppcthinendc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
oppcthinendc.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 5 |
|
oppcthinendc.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 6 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 7 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 8 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 9 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 10 |
3 6 1 7 8 9
|
oppcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝜑 ) |
| 12 |
7 8
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 13 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 14 |
13
|
ne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) |
| 15 |
5
|
necon1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ → 𝑥 = 𝑦 ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) → 𝑥 = 𝑦 ) |
| 17 |
11 12 14 16
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 = 𝑦 ) |
| 18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 19 |
18
|
ne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 𝐻 𝑧 ) ≠ ∅ ) |
| 20 |
|
neeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≠ 𝑧 ↔ 𝑦 ≠ 𝑧 ) ) |
| 21 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 𝐻 𝑧 ) = ∅ ↔ ( 𝑦 𝐻 𝑧 ) = ∅ ) ) |
| 23 |
20 22
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ↔ ( 𝑦 ≠ 𝑧 → ( 𝑦 𝐻 𝑧 ) = ∅ ) ) ) |
| 24 |
|
neeq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑧 ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑧 ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 27 |
24 26
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ↔ ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) ) |
| 28 |
5
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 32 |
27 30 31
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 34 |
11 9 33
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 𝑧 → ( 𝑥 𝐻 𝑧 ) = ∅ ) ) |
| 35 |
23 34 8
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 ≠ 𝑧 → ( 𝑦 𝐻 𝑧 ) = ∅ ) ) |
| 36 |
35
|
necon1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( ( 𝑦 𝐻 𝑧 ) ≠ ∅ → 𝑦 = 𝑧 ) ) |
| 37 |
19 36
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 = 𝑧 ) |
| 38 |
17 37
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 = 𝑧 ) |
| 39 |
38
|
equcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 = 𝑥 ) |
| 40 |
39
|
opeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 〈 𝑧 , 𝑦 〉 = 〈 𝑥 , 𝑦 〉 ) |
| 41 |
40 38
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ) |
| 42 |
17
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 43 |
13 42
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 44 |
37
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 45 |
18 44
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 46 |
11 2
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝐶 ∈ ThinCat ) |
| 47 |
8 8 43 45 3 4 46
|
thincmo2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 = 𝑔 ) |
| 48 |
47
|
equcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 = 𝑓 ) |
| 49 |
41 47 48
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 50 |
10 49
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 51 |
50
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 52 |
51
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 53 |
|
eqid |
⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) |
| 54 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 55 |
1 3
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑂 ) ) |
| 57 |
1 3 4 5
|
oppcendc |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| 58 |
6 53 4 54 56 57
|
comfeq |
⊢ ( 𝜑 → ( ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) ) |
| 59 |
52 58
|
mpbird |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ) |