Metamath Proof Explorer


Theorem oppggic

Description: Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypothesis oppggic.o
|- O = ( oppG ` G )
Assertion oppggic
|- ( G e. Grp -> G ~=g O )

Proof

Step Hyp Ref Expression
1 oppggic.o
 |-  O = ( oppG ` G )
2 eqid
 |-  ( invg ` G ) = ( invg ` G )
3 1 2 invoppggim
 |-  ( G e. Grp -> ( invg ` G ) e. ( G GrpIso O ) )
4 brgici
 |-  ( ( invg ` G ) e. ( G GrpIso O ) -> G ~=g O )
5 3 4 syl
 |-  ( G e. Grp -> G ~=g O )