Metamath Proof Explorer


Theorem opprmndb

Description: A class is a monoid if and only if its opposite (ring) is a monoid. (Contributed by SN, 20-Jun-2025)

Ref Expression
Hypothesis opprgrp.o
|- O = ( oppR ` R )
Assertion opprmndb
|- ( R e. Mnd <-> O e. Mnd )

Proof

Step Hyp Ref Expression
1 opprgrp.o
 |-  O = ( oppR ` R )
2 baseid
 |-  Base = Slot ( Base ` ndx )
3 basendxnmulrndx
 |-  ( Base ` ndx ) =/= ( .r ` ndx )
4 1 2 3 opprlem
 |-  ( Base ` R ) = ( Base ` O )
5 plusgid
 |-  +g = Slot ( +g ` ndx )
6 plusgndxnmulrndx
 |-  ( +g ` ndx ) =/= ( .r ` ndx )
7 1 5 6 opprlem
 |-  ( +g ` R ) = ( +g ` O )
8 4 7 mndprop
 |-  ( R e. Mnd <-> O e. Mnd )