Description: A class is a monoid if and only if its opposite (ring) is a monoid. (Contributed by SN, 20-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opprgrp.o | |- O = ( oppR ` R ) |
|
Assertion | opprmndb | |- ( R e. Mnd <-> O e. Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprgrp.o | |- O = ( oppR ` R ) |
|
2 | baseid | |- Base = Slot ( Base ` ndx ) |
|
3 | basendxnmulrndx | |- ( Base ` ndx ) =/= ( .r ` ndx ) |
|
4 | 1 2 3 | opprlem | |- ( Base ` R ) = ( Base ` O ) |
5 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
6 | plusgndxnmulrndx | |- ( +g ` ndx ) =/= ( .r ` ndx ) |
|
7 | 1 5 6 | opprlem | |- ( +g ` R ) = ( +g ` O ) |
8 | 4 7 | mndprop | |- ( R e. Mnd <-> O e. Mnd ) |