Metamath Proof Explorer


Theorem opsr1

Description: One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses opsr0.s
|- S = ( I mPwSer R )
opsr0.o
|- O = ( ( I ordPwSer R ) ` T )
opsr0.t
|- ( ph -> T C_ ( I X. I ) )
Assertion opsr1
|- ( ph -> ( 1r ` S ) = ( 1r ` O ) )

Proof

Step Hyp Ref Expression
1 opsr0.s
 |-  S = ( I mPwSer R )
2 opsr0.o
 |-  O = ( ( I ordPwSer R ) ` T )
3 opsr0.t
 |-  ( ph -> T C_ ( I X. I ) )
4 eqidd
 |-  ( ph -> ( Base ` S ) = ( Base ` S ) )
5 1 2 3 opsrbas
 |-  ( ph -> ( Base ` S ) = ( Base ` O ) )
6 1 2 3 opsrmulr
 |-  ( ph -> ( .r ` S ) = ( .r ` O ) )
7 6 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` O ) y ) )
8 4 5 7 rngidpropd
 |-  ( ph -> ( 1r ` S ) = ( 1r ` O ) )