Description: One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsr0.s | |- S = ( I mPwSer R ) |
|
| opsr0.o | |- O = ( ( I ordPwSer R ) ` T ) |
||
| opsr0.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| Assertion | opsr1 | |- ( ph -> ( 1r ` S ) = ( 1r ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsr0.s | |- S = ( I mPwSer R ) |
|
| 2 | opsr0.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 3 | opsr0.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 4 | eqidd | |- ( ph -> ( Base ` S ) = ( Base ` S ) ) |
|
| 5 | 1 2 3 | opsrbas | |- ( ph -> ( Base ` S ) = ( Base ` O ) ) |
| 6 | 1 2 3 | opsrmulr | |- ( ph -> ( .r ` S ) = ( .r ` O ) ) |
| 7 | 6 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` O ) y ) ) |
| 8 | 4 5 7 | rngidpropd | |- ( ph -> ( 1r ` S ) = ( 1r ` O ) ) |