Description: One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsr0.s | ||
| opsr0.o | |||
| opsr0.t | |||
| Assertion | opsr1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsr0.s | ||
| 2 | opsr0.o | ||
| 3 | opsr0.t | ||
| 4 | eqidd | ||
| 5 | 1 2 3 | opsrbas | |
| 6 | 1 2 3 | opsrmulr | |
| 7 | 6 | oveqdr | |
| 8 | 4 5 7 | rngidpropd |