Description: One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsr0.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| opsr0.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | ||
| opsr0.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| Assertion | opsr1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsr0.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | opsr0.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 3 | opsr0.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 5 | 1 2 3 | opsrbas | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑂 ) ) |
| 6 | 1 2 3 | opsrmulr | ⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑂 ) ) |
| 7 | 6 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ) |
| 8 | 4 5 7 | rngidpropd | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑂 ) ) |