| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3an |
|- ( ( ps /\ ch /\ ta ) <-> ( ( ps /\ ch ) /\ ta ) ) |
| 2 |
1
|
orbi2i |
|- ( ( ph \/ ( ps /\ ch /\ ta ) ) <-> ( ph \/ ( ( ps /\ ch ) /\ ta ) ) ) |
| 3 |
|
ordi |
|- ( ( ph \/ ( ( ps /\ ch ) /\ ta ) ) <-> ( ( ph \/ ( ps /\ ch ) ) /\ ( ph \/ ta ) ) ) |
| 4 |
|
ordi |
|- ( ( ph \/ ( ps /\ ch ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) ) ) |
| 5 |
4
|
anbi1i |
|- ( ( ( ph \/ ( ps /\ ch ) ) /\ ( ph \/ ta ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ph \/ ta ) ) ) |
| 6 |
2 3 5
|
3bitri |
|- ( ( ph \/ ( ps /\ ch /\ ta ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ph \/ ta ) ) ) |
| 7 |
|
df-3an |
|- ( ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ph \/ ta ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ph \/ ta ) ) ) |
| 8 |
6 7
|
bitr4i |
|- ( ( ph \/ ( ps /\ ch /\ ta ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ph \/ ta ) ) ) |