Metamath Proof Explorer


Theorem ordpss

Description: ordelpss with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordpss
|- ( Ord B -> ( A e. B -> A C. B ) )

Proof

Step Hyp Ref Expression
1 ordelord
 |-  ( ( Ord B /\ A e. B ) -> Ord A )
2 1 ex
 |-  ( Ord B -> ( A e. B -> Ord A ) )
3 2 ancrd
 |-  ( Ord B -> ( A e. B -> ( Ord A /\ A e. B ) ) )
4 ordelpss
 |-  ( ( Ord A /\ Ord B ) -> ( A e. B <-> A C. B ) )
5 4 ancoms
 |-  ( ( Ord B /\ Ord A ) -> ( A e. B <-> A C. B ) )
6 5 biimpd
 |-  ( ( Ord B /\ Ord A ) -> ( A e. B -> A C. B ) )
7 6 expimpd
 |-  ( Ord B -> ( ( Ord A /\ A e. B ) -> A C. B ) )
8 3 7 syld
 |-  ( Ord B -> ( A e. B -> A C. B ) )