Description: ordelpss with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ordpss | |- ( Ord B -> ( A e. B -> A C. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord | |- ( ( Ord B /\ A e. B ) -> Ord A ) |
|
2 | 1 | ex | |- ( Ord B -> ( A e. B -> Ord A ) ) |
3 | 2 | ancrd | |- ( Ord B -> ( A e. B -> ( Ord A /\ A e. B ) ) ) |
4 | ordelpss | |- ( ( Ord A /\ Ord B ) -> ( A e. B <-> A C. B ) ) |
|
5 | 4 | ancoms | |- ( ( Ord B /\ Ord A ) -> ( A e. B <-> A C. B ) ) |
6 | 5 | biimpd | |- ( ( Ord B /\ Ord A ) -> ( A e. B -> A C. B ) ) |
7 | 6 | expimpd | |- ( Ord B -> ( ( Ord A /\ A e. B ) -> A C. B ) ) |
8 | 3 7 | syld | |- ( Ord B -> ( A e. B -> A C. B ) ) |